Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 229-238    DOI: 10.11720/wtyht.2025.2341
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
塔里木盆地北缘绿洲土壤碳储量及其碳密度的分布特征
阿地来·赛提尼亚孜(), 段星星(), 何峻岭, 王翠翠, 董越
中国地质调查局 乌鲁木齐自然资源综合调查中心, 新疆 乌鲁木齐 830057
Carbon stocks and carbon density distribution of soil in oases on the northern margin of the Tarim Basin
Adilai Saitiniyazi(), DUAN Xing-Xing(), HE Jun-Ling, WANG Cui-Cui, DONG Yue
Urumqi Comprehensive Survey Center on Natural Resources, China Geological Survey, Urumqi 830057, China
全文: PDF(4219 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤碳库是全球陆地碳库的重要组成部分,对土壤碳库的研究在全球碳循环和全球变化中具有重要意义。本文依据多目标区域地球化学调查获得的土壤碳数据,估算了塔里木盆地北缘绿洲土壤0~20 cm、0~100 cm和0~180 cm深度的土壤有机碳、无机碳密度及储量,并对碳密度空间分布特征进行了研究。结果表明:研究区不同土壤深度的碳库组成不同,土壤0~20 cm深度有机碳储量占总碳储量的20.66%,随深度的增加有机碳储量占比逐渐减少,但无机碳储量占比逐渐增加,0~180 cm深度无机碳所占比例为85.73%,土壤碳库组成以无机碳为主;3种土壤层次的有机碳密度分别为1 956.45 t/km2、7 913.37 t/km2和11 973.19 t/km2,无机碳密度分别为71 722.84 t/km2、37 605.54 t/km2和71 914.93 t/km2,各层土壤有机碳密度均低于全国平均水平。研究区不同统计单元土壤碳库构成也具有一定差异,各土壤类型、土地利用方式中,潮土、棕钙土、灌淤土和盐土的有机碳、无机碳密度较高,风沙土、灌漠土较低;耕地土壤有机碳和无机碳密度最高,未利用地和建设用地的土壤碳密度较低。各地貌间,起伏山地土壤有机碳密度最高,冲洪积平原无机碳密度相对较高;研究区土壤碳密度空间分布呈现焉耆盆地为有机碳密度高值区,喀什三角洲部分区域(西、南部局地及东部边缘)为有机碳密度中等水平区,阿克苏地区为无机碳密度高值区的特征。综上,在极端干旱背景下,塔里木盆地北缘绿洲具有较大的无机碳碳汇潜力,但土壤类型、土地利用方式、地貌景观等因素对土壤碳固存的影响较大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阿地来·赛提尼亚孜
段星星
何峻岭
王翠翠
董越
关键词 土壤碳密度土壤碳储量碳密度空间分布塔里木盆地北缘碳汇    
Abstract

Soil carbon pools constitute a crucial part of global terrestrial carbon pools. Hence, investigating soil carbon pools is critical for understanding the global carbon cycle and changes. Based on the soil carbon data obtained from a multi-purpose regional geochemical survey, this study estimated the densities and stocks of organic and inorganic carbon of soil at depths ranging from 0 to 20 cm, 0 to 100 cm, and 0 to 180 cm in oases on the northern margin of the Tarim Basin. Moreover, it delved into the spatial distribution of carbon density. The results of this study are as follows: (1) The compositions of soil carbon pools varied with the soil depth in the study area. At depths ranging from 0 to 20 cm, the organic carbon stocks accounted for 20.66% of the total carbon stocks. With an increase in soil depth, the organic carbon stocks gradually decreased, while the inorganic carbon stocks gradually increased. At depths ranging from 0 to 180 cm, the inorganic carbon stocks represented 85.73% of the total, suggesting that inorganic carbon predominated in the compositions of soil carbon pools; (2) The soil in three depth ranges exhibited organic carbon densities of 1,956.45, 7,913.37, and 119,73.19 t/km2, which were all below the national average level, and inorganic carbon densities of 71,722.84, 37,605.54, and 71,914.93 t/km2; (3) The compositions of soil carbon pools varied somewhat across statistical units. In terms of soil types and land use types, the densities of organic and inorganic carbon were higher in fluvo-aquic soil, brown calcic soil, irrigation-silting soil, and solonchak but lower in aeolian sandy soil and irrigated desert soil. Cultivated land exhibited the highest densities of organic and inorganic carbon in the soil, whereas unused and construction land manifested the lowest carbon densities; (4) In terms of topography, undulating mountains manifested the highest soil organic carbon density, whereas alluvial-proluvial plains displayed relatively high inorganic carbon density; (5) The spatial distribution of soil carbon density in the study area was characterized by high organic carbon densities in the Yanqi Basin, medium organic carbon densities in part of Kashgar Delta (western and southern localities and eastern margin), and high inorganic carbon densities in the Aksu area. Overall, under the background of extreme drought, the oases on the northern margin of the Tarim Basin show high potential for inorganic carbon sink, with soil carbon sequestration significantly influenced by soil types, land use types, and geomorphologic landscapes.

Key wordssoil carbon density    soil carbon stock    spatial distribution of carbon density    northern margin of the Tarim Basin    carbon sink
收稿日期: 2023-08-04      修回日期: 2024-03-06      出版日期: 2025-02-20
ZTFLH:  X142  
  X825  
基金资助:新疆维吾尔自治区面上基金项目(2022D01A149);中国地质调查局项目(ZD20208072);中国地质调查局自然资源综合调查指挥中心科技创新项目(KC20220007)
通讯作者: 段星星(1983-),男,高级工程师,主要从事地球化学调查和研究工作。Email:duanxx@loxmail.com
作者简介: 阿地来·赛提尼亚孜(1992-),女,助理工程师,硕士,主要从事生态地质调查及土壤碳循环研究工作。Email:1152725803@qq.com
引用本文:   
阿地来·赛提尼亚孜, 段星星, 何峻岭, 王翠翠, 董越. 塔里木盆地北缘绿洲土壤碳储量及其碳密度的分布特征[J]. 物探与化探, 2025, 49(1): 229-238.
Adilai Saitiniyazi, DUAN Xing-Xing, HE Jun-Ling, WANG Cui-Cui, DONG Yue. Carbon stocks and carbon density distribution of soil in oases on the northern margin of the Tarim Basin. Geophysical and Geochemical Exploration, 2025, 49(1): 229-238.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2341      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/229
Fig.1  研究区位置及采样点分布
土壤深度/cm 有机碳储
量/Mt
无机碳储
量/Mt
全碳储
量/Mt
有机碳占全
碳比例/%
无机碳占全
碳比例/%
有机碳密度/
(t·km-2)
无机碳密度/
(t·km-2)
全碳密度/
(t·km-2)
0~20 78.26 300.61 378.87 20.66 79.34 1956.45 71722.84 73679.29
0~100 316.53 1504.22 1820.76 17.38 82.62 7913.37 37605.54 45518.91
0~180 478.93 2876.60 3355.52 14.27 85.73 11973.19 71914.93 83888.12
Table 1  研究区不同深度土壤碳储量及密度
Fig.2  研究区各深度土壤有机碳、无机碳密度
土壤类型 面积/km2 占比/
%
表层土壤(0~20 cm) 中上层土壤(0~100 cm) 全层土壤(0~180 cm)
有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt
草甸土 10024 20.62 14.98 61.13 76.11 60.29 304.56 364.85 92.75 596.44 689.20
潮土 8112 16.69 15.60 56.80 72.39 61.70 283.64 345.34 90.79 540.07 630.86
风沙土 2196 4.52 2.25 11.81 14.06 9.54 59.98 69.52 15.45 118.27 133.72
灌漠土 156 0.32 0.30 0.66 0.96 1.18 3.06 4.23 1.50 4.42 5.92
灌淤土 5856 12.05 11.65 35.70 47.35 46.39 176.21 222.60 69.24 329.77 399.01
盐土 14292 29.40 20.17 87.22 107.39 82.61 444.67 527.28 129.67 886.83 1016.50
沼泽土 1724 3.55 4.06 10.50 14.56 17.07 52.92 69.99 23.69 86.77 110.46
棕钙土 392 0.81 0.91 2.81 3.72 3.60 13.26 16.86 5.41 24.09 29.50
棕漠土 5856 12.05 8.35 33.98 42.33 34.15 165.93 200.09 50.41 289.95 340.36
总计 48608 100.00 78.26 300.61 378.87 316.50 1504.22 1820.76 478.90 2876.60 3355.52
Table 2  研究区不同土壤类型碳储量统计
Fig.3  研究区不同土地利用下有机碳、无机碳密度
土地利
用类型
面积/km2 占比/% 表层土壤(0~20 cm) 中上层土壤(0~100 cm) 全层土壤(0~180 cm)
有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt
草地 9932 20.43 13.91 58.25 72.15 57.68 294.64 352.32 89.85 571.76 661.62
耕地 28468 58.57 50.08 182.01 232.10 199.95 907.11 1107.05 299.50 1739.0 2 038.50
林地 1648 3.39 2.32 9.88 12.2 9.35 49.58 58.93 14.19 96.35 110.54
建设用地 1012 2.08 2.02 6.70 8.72 7.99 33.33 41.32 11.83 63.20 75.02
未利用地 6408 13.18 7.97 36.21 44.18 33.45 181.87 215.32 51.32 337.16 388.48
水域 1140 2.35 1.85 7.32 9.17 7.70 36.50 44.20 11.63 66.91 78.54
Table 3  研究区不同土地利用下的碳储量
Fig.4  不同地形地貌类型下的碳密度
地形地貌 面积/km2 占比/% 表层土壤(0~20 cm) 中上层土壤(0~100 cm) 全层土壤(0~180 cm)
有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt 有机碳/Mt 无机碳/Mt 全碳/Mt
丘陵 212 2.26 1.15 4.75 5.90 4.77 23.33 28.10 7.40 43.69 51.09
黄土梁峁 16 0.17 0.38 1.23 1.61 1.50 6.11 7.61 2.18 11.04 13.22
冲洪积平原 8336 88.83 69.54 261.92 331.46 281.11 1311.79 1 592.90 424.01 2502.63 2926.63
风积地貌 688 7.33 2.49 10.32 12.80 10.33 51.77 62.10 16.68 102.77 119.45
起伏山地 80 0.85 0.58 1.88 2.46 2.32 9.31 11.63 3.43 16.86 20.29
冰水沉积平原 52 0.55 0.49 2.50 2.99 2.02 11.63 13.65 2.95 18.72 21.68
Table 4  不同地貌类型下的碳储量
Fig.5  研究区不同深度土壤有机碳、无机碳密度空间分布
a、c、e—分别为表层、中上层和全层土壤有机碳密度分布;b、d、f—分别为表层、中上层和全层无机碳密度分布
[1] Gross A, Glaser B. Meta-analysis on how manure application changes soil organic carbon storage[J]. Scientific Reports, 2021, 11(1):5516.
doi: 10.1038/s41598-021-82739-7 pmid: 33750809
[2] Zhu G F, Qiu D D, Zhang Z X, et al. Land-use changes lead to a decrease in carbon storage in arid region,China[J]. Ecological Indicators, 2021,127:107770.
[3] Matthews H D, Zickfeld K, Koch A, et al. Accounting for the climate benefit of temporary carbon storage in nature[J]. Nature Communications, 2023, 14(1):5485.
doi: 10.1038/s41467-023-41242-5 pmid: 37679349
[4] Lane J, Greig C, Garnett A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions[J]. Nature Climate Change, 2021, 11(11):925-936.
[5] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2):151-163.
[6] Hartley I P, Hill T C, Chadburn S E, et al. Temperature effects on carbon storage are controlled by soil stabilisation capacities[J]. Nature Communications, 2021,12:6713.
[7] Basher L, Betts H, Lynn I, et al. A preliminary assessment of the impact of landslide,earthflow,and gully erosion on soil carbon stocks in New Zealand[J]. Geomorphology, 2018,307:93-106.
[8] Yang P P, Shu Q, Liu Q, et al. Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu,China[J]. Ecological Indicators, 2021,126:107633.
[9] Ferdush J, Paul V. A review on the possible factors influencing soil inorganic carbon under elevated CO2[J]. Catena, 2021,204:105434.
[10] 杨忠芳, 夏学齐, 余涛, 等. 内蒙古中北部土壤碳库构成及其影响因素[J]. 地学前缘, 2011, 18(6):1-10.
[10] Yang Z F, Xia X Q, Yu T, et al. Soil carbon pool in the northeast Inner Mongolia and its influencing factors[J]. Earth Science Frontiers, 2011, 18(6):1-10.
[11] 李春亮, 王翔, 张炜, 等. 黄土高原西段表层土壤有机碳储量及时空变化规律[J]. 现代地质, 2022, 36(2):655-661.
[11] Li C L, Wang X, Zhang W, et al. Topsoil organic carbon storage and its spatial and temporal variation in the western Loess Plateau[J]. Geoscience, 2022, 36(2):655-661.
[12] 王荔, 曾辉, 张扬建, 等. 青藏高原土壤碳储量及其影响因素研究进展[J]. 生态学杂志, 2019, 38(11):3506-3515.
[12] Wang L, Zeng H, Zhang Y J, et al. A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau[J]. Chinese Journal of Ecology, 2019, 38(11):3506-3515.
[13] 刘庆宇, 马瑛, 程莉, 等. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4):1098-1108.
[13] Liu Q Y, Ma Y, Cheng L, et al. Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai[J]. Geophysical and Geochemical Exploration, 2023, 47(4):1098-1108.
[14] 刘京, 常庆瑞, 陈涛, 等. 陕西省土壤有机碳密度空间分布及储量估算[J]. 土壤通报, 2012, 43(3):656-661.
[14] Liu J, Chang Q R, Chen T, et al. Spatial distribution characteristics and estimation of soil organic carbon density and storage in Shanxi Province,in China[J]. Chinese Journal of Soil Science, 2012, 43(3):656-661.
[15] 陈新, 贡璐, 李杨梅, 等. 典型绿洲不同土壤类型有机碳含量及其稳定碳同位素分布特征[J]. 环境科学, 2018, 39(10):4735-4743.
[15] Chen X, Gong L, Li Y M, et al. Spatial variation of soil organic carbon and stable isotopes in different soil types of a typical oasis[J]. Environmental Science, 2018, 39(10):4735-4743.
[16] 向姣, 王著峰, 王玉刚, 等. 长期不同施肥对新疆荒漠农田土壤碳含量及其剖面分布的影响[J]. 水土保持学报, 2022, 36(4):333-341.
[16] Xiang J, Wang Z F, Wang Y G, et al. Effects of long-term different fertilizations on soil carbon content and profile distribution in desert cropland in Xinjiang[J]. Journal of Soil and Water Conservation, 2022, 36(4):333-341.
[17] Xiang J, Wang Z F, Wang Y G et al. Effects of long-term different fertiliazations on soil carbon content and profile distribution in desert cropland in Xinjiang[J]. Journal of Soil and Water Conservation, 2022, 4(36):333-341.
[18] 陈园园, 冯文婷, 孔璐, 等. 内陆河流域土地利用对土壤无机碳的影响[J]. 生态学杂志, 2019, 38(10):3042-3049.
[18] Chen Y Y, Feng W T, Kong L, et al. Effects of land use on soil inorganic carbon in an inland basin[J]. Chinese Journal of Ecology, 2019, 38(10):3042-3049.
[19] Yang Y H, Chen Y N, Li Z, et al. Land-use/cover conversion affects soil organic-carbon stocks:A case study along the main channel of the Tarim River,China[J]. PLoS One, 2018, 13(11):e0206903.
[20] Xu E Q, Zhang H Q, Xu Y M. Exploring land reclamation history:Soil organic carbon sequestration due to dramatic oasis agriculture expansion in arid region of Northwest China[J]. Ecological Indicators, 2020,108:105746.
[21] 奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1):58-67.
[21] Xi X H, Zhang J X, Liao Q L, et al. Multi-purpose regional geochemical survey and soil carbon reserves problem:Examples of Jiangsu,Henan,Sichuan,Jilin Provinces and Inner Mongolia[J]. Quaternary Sciences, 2008, 28(1):58-67.
[22] 奚小环, 杨忠芳, 廖启林, 等. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 2010, 30(3):573-583.
[22] Xi X H, Yang Z F, Liao Q L, et al. Soil organic carbon storage in typical regions of China[J]. Quaternary Sciences, 2010, 30(3):573-583.
[23] 代杰瑞, 喻超, 张杰, 等. 山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析[J]. 吉林大学学报:地球科学版, 2014, 44(5):1659-1668.
[23] Dai J R, Yu C, Zhang J, et al. Analysis on soil organic carbon storage and the potential for carbon sequestration in the blue economic zone of Shandong peninsula[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1659-1668.
[24] 陈富荣, 梁红霞, 邢润华, 等. 安徽省土壤固碳潜力及有机碳汇(源)研究[J]. 土壤通报, 2017, 48(4):843-851.
[24] Chen F R, Liang H X, Xing R H, et al. Soil carbon sequestration potential and organic carbon sink/source in Anhui Province[J]. Chinese Journal of Soil Science, 2017, 48(4):843-851.
[25] 廖艳, 孙淑梅, 杨忠芳, 等. 吉林中西部地区土壤有机碳储量及其时空变化特征[J]. 第四纪研究, 2011, 31(1):189-198.
[25] Liao Y, Sun S M, Yang Z F, et al. Soil organic carbon storage and its spatial-temporal variation in the central and western area of Jilin[J]. Quaternary Sciences, 2011, 31(1):189-198.
[26] 傅野思, 夏学齐, 杨忠芳, 等. 内蒙古自治区土壤有机碳库储量及分布特征[J]. 现代地质, 2012, 26(5):886-895.
[26] Fu Y S, Xia X Q, Yang Z F, et al. Storage and distribution of soil organic carbon in Inner Mongolia[J]. Geoscience, 2012, 26(5):886-895.
[27] Zhang F, Wang X J, Guo T W, et al. Soil organic and inorganic carbon in the loess profiles of Lanzhou area:Implications of deep soils[J]. CATENA, 2015,126:68-74.
[28] Li Y, Wang Y G, Houghton R A, et al. Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 2015, 42(14):5880-5887.
[29] 苏培玺, 王秀君, 解婷婷, 等. 干旱区荒漠无机固碳能力及土壤碳同化途径[J]. 科学通报, 2018, 63(8):755-765.
[29] Su P X, Wang X J, Xie T T, et al. Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region[J]. Chinese Science Bulletin, 2018, 63(8):755-765.
[30] 李畅, 杨忠芳, 余涛, 等. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J] .中国地质, 2023, 51(4):1210-1242.
[30] Li C, Yang Z F, Yu T, et al. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction:A review[J]. Geology in China, 2023, 51(4):1210-1242.
[31] 彭康, 张飞飞, 邵志东, 等. 新疆奇台绿洲不同耕作年限荒漠灰钙土无机碳变化及其影响因素[J]. 农业环境科学学报, 2024, 43(1):91-101.
[31] Peng K, Zhang F F, Shao Z D, et al. Variation and influencing factors of desert-sierozem soil inorganic carbon in different tillage years in the Qitai Oasis,Xinjiang,China[J]. Journal of Agro-Environment Science, 2024, 43(1):91-101.
[32] 张林, 孙向阳, 曹吉鑫, 等. 荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移[J]. 干旱区地理, 2010, 33(5):732-739.
[32] Zhang L, Sun X Y, Cao J X, et al. Transfer of soil organic carbon to soil inorganic carbon in carbonate rock soil of desert grassland[J]. Arid Land Geography, 2010, 33(5):732-739.
[33] 王诚煜, 李玉超, 关旭, 等. 辽宁西部沿海地区土壤碳库构成及变化规律研究[J]. 地质与资源, 2021, 30(2):173-185,135.
[33] Wang C Y, Li Y C, Guan X, et al. Compositions and variation rule of soil carbon pool in the coastal area of western Liaoning Province[J]. Geology and Resources, 2021, 30(2):173-185,135.
[34] Yang Y S, Xie J S, Sheng H, et al. The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of Southern China[J]. Journal of Geographical Sciences, 2009, 19(1):49-57.
doi: 10.1007/s11442-009-0049-5
[35] 赵晶晶, 贡璐, 安申群, 等. 塔里木盆地北缘绿洲不同连作年限棉田土壤有机碳、无机碳含量与环境因子的相关性[J]. 环境科学, 2018, 39(7):3373-3381.
[35] Zhao J J, Gong L, An S Q, et al. Correlation between soil organic and inorganic carbon and environmental factors in cotton fields in different continuous cropping years in the oasis of the northern Tarim Basin[J]. Environmental Science, 2018, 39(7):3373-3381.
[36] 郭洋, 李香兰, 王秀君, 等. 干旱半干旱区农田土壤碳垂直剖面分布特征研究[J]. 土壤学报, 2016, 53(6):1433-1443.
[36] Guo Y, Li X L, Wang X J, et al. Proifledistribution of soil inorganic and organic carbon in farmland in arid and semi-arid areas of China[J]. Acta Pedologica Sinica, 2016, 53(6):1433-1443.
[37] Zondervan J R, Hilton R G, Dellinger M, et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink[J]. Nature, 2023, 623(7986):329-333.
[38] 谢娜, 冯备战, 李春亮. 不同土地利用方式土壤有机碳变化特征及与重金属的相关性分析[J]. 中国农学通报, 2019, 35(26):115-120.
doi: 10.11924/j.issn.1000-6850.casb19030032
[38] Xie N, Feng B Z, Li C L. Softorganic carbon under different land use patterns:Change characteristics and its correlation with softheavy metals[J]. Chinese Agricultural Science Bulletin, 2019, 35(26):115-120.
[39] Li J, Wen Y C, Li X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 2018,175:281-290.
[40] 姚春彦, 马东升, 丁海峰, 等. 新疆阿克苏地区早寒武世碳酸盐岩沉积环境:微量元素和碳同位素证据[J]. 地球化学, 2011, 40 (1):63-71.
[40] Yao C Y, Ma D S, Ding H F, et al. Reconstruction of the Early Cambrian carbonate sedimentary environment in akesu area of Xinjiang,China:Evidence from trace elemnrts and carbon isotope excursion[J]. Ceochemica, 2011, 40 (1):63-71.
[41] Cillis D, Maestrini B, Pezzuolo A, et al. Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions[J]. Soil and Tillage Research, 2018,183:51-59.
[42] 孔祥斌, 胡莹洁, 李月, 等. 北京市耕地表层土壤有机碳分布及其影响因素[J]. 资源科学, 2019, 41(12):2307-2315.
doi: 10.18402/resci.2019.12.14
[42] Kong X B, Hu Y J, Li Y, et al. Distribution and influencing factors of soil organic carbon of cultivated land topsoil in Beijing[J]. Resources Science, 2019, 41(12):2307-2315.
doi: 10.18402/resci.2019.12.14
[43] 王玉刚, 郑新军, 李彦. 干旱区不同景观单元土壤盐分的变化特征[J]. 生态学杂志, 2009, 28(11):2293-2298.
[43] Wang Y G, Zheng X J, Li Y. Change characteristics of soil salt content in different landscape units in arid region[J]. Chinese Journal of Ecology, 2009, 28(11):2293-2298.
[1] 夏炎, 王润涛, 杜倩倩, 王喜宽, 吕红杰, 侯进凯, 李炳辉. 洛阳市农田土壤碳汇规律研究[J]. 物探与化探, 2025, 49(1): 215-228.
[2] 刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com