Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1348-1353    DOI: 10.11720/wtyht.2023.1527
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
高密地区灌溉水及土壤氟地球化学特征
姜冰1,2,3(), 刘阳1, 吴振1,2, 张德明1, 孙增兵1,2, 马健1
1.山东省第四地质矿产勘查院,山东 潍坊 261021
2.山东省地质矿产勘查开发局 海岸带地质环境保护重点实验室,山东 潍坊 261021
3.山东科技大学 地球科学与工程学院,山东 青岛 266590
Geochemical characteristics of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China
JIANG Bing1,2,3(), LIU Yang1, WU Zhen1,2, ZHANG De-Ming1, SUN Zeng-Bing1,2, MA Jian1
1. Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
2. Key Laboratory of Coastal Zone Geological Environment Protection, Shandong Geology and Mineral Exploration and Development Bureau, Weifang 261021, China
3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
全文: PDF(1766 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为研究高密地区灌溉水及土壤氟的分布规律及影响因素,通过系统采样测试,获得了灌溉水pH值、氟化物含量及土壤pH、有机质、氟含量等数据,绘制了地球化学等值线图,进行了统计、相关性和差异性分析,探讨了影响因素。结果表明,研究区灌溉水氟化物含量均值为1.89 mg/L,空间变异性强,高值区分布在北部低平冲积平原区,大于2 mg/L的样本数占比63.16%,与水质pH值呈显著正相关(P < 0.01);土壤氟含量均值为455×10-6,空间分布较不均匀,氟高和过剩的区域分布在研究区北部,土壤氟与土壤pH、有机质、灌溉水氟化物均呈显著正相关(P < 0.01);砂姜黑土分布范围内,灌溉水氟化物含量和土壤氟含量高。本研究揭示了高密地区灌溉水氟化物和土壤氟的本底特征及影响因素,可为精准防治地方性氟中毒提供地球化学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜冰
刘阳
吴振
张德明
孙增兵
马健
关键词 灌溉水土壤地球化学特征高密地区    
Abstract

This study aims to ascertain the distribution patterns and influencing factors of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China. Through systematic sampling and testing, this study obtained data including the pH and fluoride concentration of irrigation water and the pH, organic matter, and fluorine concentration of soils. Based on these data, this study plotted the geochemical contour maps for statistical, correlation, and difference analyses. Furthermore, this study explored the influencing factors. The results are as follows: (1) The irrigation water in the study area has a fluoride concentration of 1.89 mg/L on average, which shows strong spatial variability. Zones with high fluoride concentrations in irrigation water are distributed in the northern low-flat alluvial plain, with the number of samples with fluoride concentrations greater than 2 mg/L accounting for 63.16%. There is a significant positive correlation between the fluoride concentration in the irrigation water and the pH (P < 0.01); (2) The soils have a fluoride concentration of 455×10-6 on average, which shows an inhomogeneous spatial distribution. Zones with high or excess fluorine concentrations are distributed in the northern part of the study area. The fluorine concentrations of soils show significant positive correlations with the pH and organic matter of soils and the fluoride concentration of irrigation water (P < 0.01); (3) The fluoride concentrations in the irrigation water and soils are high in the distribution area of lime concretion black soil. The results of this study reveal the background characteristics and influencing factors of fluoride in the irrigation water and soils of the Gaomi area, providing a geochemical basis for the precise prevention and control of endemic fluorosis.

Key wordsirrigation water    soil    fluorine    geochemical characteristics    Gaomi area
收稿日期: 2022-10-20      修回日期: 2023-01-12      出版日期: 2023-10-20
ZTFLH:  X142  
  S153  
基金资助:山东省地质矿产勘查开发局地质勘查引领示范项目(KC202207)
作者简介: 姜冰(1984-),男,高级工程师,主要从事生态环境地球化学研究工作。Email:jbing08@163.com
引用本文:   
姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
JIANG Bing, LIU Yang, WU Zhen, ZHANG De-Ming, SUN Zeng-Bing, MA Jian. Geochemical characteristics of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China. Geophysical and Geochemical Exploration, 2023, 47(5): 1348-1353.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1527      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1348
Fig.1  研究区土壤类型及灌溉水样点分布
指标 统计数 异常数 平均值 标准差 变异系数



氟化物/
(mg·L-1)
92 3 1.89 1.85 0.98
pH值 91 4 7.81 0.25 0.03



氟/10-6 8066 131 455 167 0.37
有机质/10-3 8116 81 16.28 5.68 0.35
pH值 8033 164 7.11 1.02 0.14
Table 1  氟含量及土壤理化指标描述性统计
Fig.2  灌溉水氟化物地球化学分布
Fig.3  表层土壤氟地球化学等级
土壤pH 土壤有机质 灌溉水氟化物
与土壤氟的
Pearson相关性
0.458** 0.411** 0.653**
显著性(双尾) 0 0 0
样品数 7902 7986 91
Table 2  土壤氟与理化指标及灌溉水氟化物的相关性
指标 棕壤 褐土 粗骨土 砂姜黑土 潮土 潍坊市背景值[26]
土壤氟/10-6 306 ± 54 c 362 ± 66 b 346 ± 85 b 547 ± 151 a 358 ± 97 b 469
土壤有机质/10-3 12.44 ± 4.37 e 16.51 ± 5.32 b 15.15 ± 4.82 c 17.87 ± 5.29 a 14.23 ± 6.01 d 13.79
土壤pH 5.71 ± 0.80 e 6.39 ± 0.91 c 5.86 ± 1.08 d 7.64 ± 0.71 a 7.11 ± 0.92 b 7.43
Table 3  不同土壤类型土壤氟、有机质和pH的对比
[20] Li B Z. Probability and statistics[M]. Shanghai: Tongji University Press, 1994.
[21] 中华人民共和国生态环境部, 国家市场环境监督管理总局.GB 5084—2021农田灌溉水质标准[S]. 北京: 中国标准出版社, 2021.
[21] Ministry of Ecological Environment of the People’s Republic of China. State Administration of Market Environment Supervision.GB 5084—2021 Standard for irrigation water quality[S]. Beijing: Standards Press of China, 2021.
[22] 王存龙, 王增辉, 陈磊, 等. 寿光市高氟地下水的分布规律和成因[J]. 物探与化探, 2012, 36(2):267-272.
[22] Wang C L, Wang Z H, Chen L, et al. Distribution regularity and genesis of high-fluorine underground water in Shouguang City[J]. Geophysical and Geochemical Exploration, 2012, 36(2):267-272.
[23] 荆秀艳, 李小珍, 王文姬, 等. 银川平原地下水中氟分布特征及健康风险评价[J]. 环境科学与技术, 2022, 45(2):174-181.
[23] Jing X Y, Li X Z, Wang W J, et al. Distribution characteristics and health risk assessment of fluorine in groundwater in Yinchuan Plain[J]. Environmental Science & Technology, 2022, 45(2):174-181.
[24] 姜冰, 王松涛, 孙增兵, 等. 山东省青州市土壤养分元素有效量及其影响因素[J]. 土壤, 2021, 53(6):1221-1227.
[24] Jiang B, Wang S T, Sun Z B, et al. Available contents of soil nutrient elements and their influencing factors in Qingzhou City,Shandong Province[J]. Soils, 2021, 53(6):1221-1227.
[25] 王滨滨, 郑宝山, 廖昂. 氟在土壤中的富集与淋滤[J]. 矿物学报, 2010, 30(4):496-500.
[25] Wang B B, Zheng B S, Liao A. Fluoride enrichment and leaching in the soil:A review[J]. Acta Mineralogica Sinica, 2010, 30(4):496-500.
[26] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56.
[1] 谭力, 王占岐, 薛志斌, 等. 南水北调中线核心水源区土壤氟空间变异特征与污染风险评价[J]. 资源科学, 2021, 43(2):368-379.
doi: 10.18402/resci.2021.02.14
[1] Tan L, Wang Z Q, Xue Z B, et al. Spatial variability and pollution risk assessment of soil fluorine in the core area of the Middle Route of the South-to-North Water Transfer Project[J]. Resources Science, 2021, 43(2):368-379.
doi: 10.18402/resci.2021.02.14
[2] Wang Y X, Li J X, Ma T, et al. Genesis of geogenic contaminated groundwater:As,F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24):2895-2933.
doi: 10.1080/10643389.2020.1807452
[3] 侯拓, 冯海艳, 杨忠芳, 等. 山东省桓台地区土壤F的地球化学特征及其影响因素[J]. 地质通报, 2021, 40(9):1584-1591.
[3] Hou T, Feng H Y, Yang Z F, et al. Geochemical characteristics and influencing factors of soil fluorine in the Huantai area of Shandong Province[J]. Geological Bulletin of China, 2021, 40(9):1584-1591.
[4] More S, Dhakate R, Ratnalu G V, et al. Hydrogeochemistry and Health Risk Assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District,Telangana State,India[J]. Environmental Earth Sciences, 2021, 80(7) :1-18.
doi: 10.1007/s12665-020-09327-2
[5] 杨金燕, 苟敏. 中国土壤氟污染研究现状[J]. 生态环境学报, 2017, 26(3):506-513.
doi: 10.16258/j.cnki.1674-5906.2017.03.021
[5] Yang J Y, Gou M. The research status of fluorine contamination in soils of China[J]. Ecology and Environmental Sciences, 2017, 26(3):506-513.
[6] 李彩霞, 于兆安, 吴衍华. 山东高密地区高F区水文地球化学特征[J]. 地质通报, 2008, 27(5):689-699.
[6] Li C X, Yu Z A, Wu Y H. Hydrogeochemical characteristics of high-fluorine groundwater in the Gaomi area,Shandong,China[J]. Geological Bulletin of China, 2008, 27(5):689-699.
[7] 于群英, 李孝良, 汪建飞, 等. 安徽省土壤氟含量及其赋存特征[J]. 长江流域资源与环境, 2013, 22(7):915-921.
[7] Yu Q Y, Li X L, Wang J F, et al. Content of fluorine and characteristics of fluorine forms in soils of Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2013, 22(7):915-921.
[8] 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3):99-114.
doi: 10.13745/j.esf.sf.2022.1.33
[8] Sun Y, Zhou J L, Yang F Y, et al. Distribution and co-enrichment genesis of arsenic,fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3):99-114.
[9] 杨笑笑, 曾道明, 罗先熔, 等. 珠三角新会地区表层土壤硒、氟、碘地球化学特征研究[J]. 地球与环境, 2020, 48(2):181-189.
[9] Yang X X, Zeng D M, Luo X R, et al. Geochemical characteristics of selenium,fluorine and iodine in surface soils of the Xinhui Area,the Pearl River Delta,China[J]. Earth and Environment, 2020, 48(2):181-189.
[10] 鲁涵, 曾妍妍, 周金龙, 等. 巴楚县浅层地下水中氟的分布特征及影响因素分析[J]. 环境化学, 2021, 40(11):3455-3463.
[10] Lu H, Zeng Y Y, Zhou J L, et al. Distribution characteristics and influencing factors of fluorine in shallow groundwater of Bachu County[J]. Environmental Chemistry, 2021, 40(11):3455-3463.
[11] 高宗军, 张福存, 安永会, 等. 山东高密高氟地下水成因模式与原位驱氟设想[J]. 地学前缘, 2014, 21(4):50-58.
[11] Gao Z J, Zhang F C, An Y H, et al. The formation and model of highly-concentrated fluoride groundwater and in-situ fluoride dispelling assumption in Gaomi City of Shandong Province[J]. Earth Science Frontiers, 2014, 21(4):50-58.
[12] 王存龙, 庞绪贵, 王红晋, 等. 高密市高氟地下水成因研究[J]. 地球与环境, 2011, 39(3):355-362.
[12] Wang C L, Pang X G, Wang H J, et al. High-F groundwater in Gaomi City-Its genetic study[J]. Earth and Environment, 2011, 39(3):355-362.
[13] 韩晔, 郑玉萍, 张涛, 等. 山东省高密市高氟区地球化学及水文地球化学特征[J]. 物探与化探, 2013, 37(6):1107-1113.
[13] Han Y, Zheng Y P, Zhang T, et al. Geochemical and hydrogeochemical characteristics of high fluorine area in Gaomi,Shandong[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1107-1113.
[14] 中华人民共和国国土资源部.DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
[14] Ministry of Land and Resources of the People’s Republic of China.DZ/T 0295—2016 Specification of land quality geochemical assessment[S]. Beijing: Geological Publishing House, 2016.
[15] 国家环境保护局.GB 6920—1986水质pH值的测定玻璃电极法[S]. 北京: 中国环境科学出版社, 1986.
[15] State Environmental Protection Administration of China.GB 6920—1986 Water quality-determination of pH value-Glass electrode method[S]. Beiiing: China Environmental Science Press, 1986.
[16] 国家环境保护局.GB 7484—1987水质氟化物的测定离子选择电极法[S]. 北京: 中国环境科学出版社, 1987.
[16] State Environmental Protection Administration of China.GB 7484—1987 Water quality-determination of fluoride-Ion selective electrode method[S]. Beiiing: China Environmental Science Press, 1987.
[17] 中华人民共和国农业部.NY/T 1377—2007土壤pH的测定[S]. 北京: 中国标准出版社, 2007.
[17] Ministry of Agriculture of the People’s Republic of China.NY/T 1377—2007 Determination of pH in soil[S]. Beiiing: Standards Press of China, 2007.
[18] 中华人民共和国农业部.NY/T 1121.6—2006土壤检测第6部分:土壤有机质的测定[S]. 北京: 中国标准出版社, 2006.
[18] Ministry of Agriculture of the People's Republic of China.NY/T 1121.6—2006 Soil testing-Part 6:Method for determination of soil organic matter[S]. Beiiing: Standards Press of China, 2006.
[19] 中华人民共和国环境保护部.HJ 873—2017土壤水溶性氟化物和总氟化物的测定离子选择电极法[S]. 北京: 中国环境科学出版社, 2017.
[19] Ministry of Environmental Protection of the People’s Republic of China.HJ 873—2017 Soil-determination of water soluble fluoride and total fluoride-ion selective electrode method[S]. Beiiing: China Environmental Science Press, 2017.
[26] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):46-56.
[20] 李炳钊. 概率统计[M]. 上海: 同济大学出版社, 1994.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[4] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[5] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[6] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[7] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[8] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[9] 刘彬, 徐进力, 杜雪苗, 唐瑞玲, 张鹏鹏, 白金峰, 于林松, 万方. 超声提取—离子选择电极法测定化肥样品中的氟[J]. 物探与化探, 2023, 47(3): 775-781.
[10] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[11] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[12] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[13] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
[14] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
[15] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com