Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1169-1178    DOI: 10.11720/wtyht.2023.0010
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测
薛东旭1(), 刘诚1(), 郭发1, 王俊2, 徐多勋1, 杨生飞1, 张沛1
1.中国地质调查局 西安矿产资源调查中心,陕西 西安 710100
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method
XUE Dong-Xu1(), LIU Cheng1(), GUO Fa1, WANG Jun2, XU Duo-Xun1, YANG Sheng-Fei1, ZHANG Pei1
1. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, China
2. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(4345 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

陕西眉县汤峪地热田储量丰富,但经过长期开采,现有地热井水温度和出水量逐年下降,因此亟需寻找新的潜在地热资源。区内已知地热井受断裂控制明显,故研究此处深部断裂展布对于潜在地热资源的探究具有重要现实意义。受方法本身限制和地形影响,研究区难以进行传统地质路线调查或大规模工程以探究控热断裂,因此本文优选基于穿透性的土壤氡气测量与可控源音频大地电磁的新技术方法组合探测隐伏断裂,进而圈定研究区潜在地热资源。基于实测的地表土壤氡浓度异常数据和CSAMT反演提供的地下电性结构模型,在验证已知断裂的基础上,新推断隐伏断裂6条,预测潜在地热区2处,并建立了汤峪地热田概念模型。结果表明,隐伏断裂处的土壤氡浓度远高于区域背景值,CSAMT反演视电阻率结果显示其位于低阻破碎带,圈定的潜在地热区分别位于剖面450~750 m和850~1150 m范围内,深度约250~300 m。本次研究认为,地热田整体位于低阻且土壤氡异常值大于区域背景值3倍的区域,研究结果可为该地区后续潜在地热资源的可持续开发利用提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛东旭
刘诚
郭发
王俊
徐多勋
杨生飞
张沛
关键词 土壤氡气测量CSAMT隐伏断裂地热资源汤峪    
Abstract

Despite abundant geothermal reserves of the Tangyu geothermal field in Meixian County, Shaanxi Province, long-term exploitation has decreased the water temperatures and yields of its existing geothermal wells year by year. Hence, there is an urgent need to explore new potential geothermal resources in the geothermal field. Since the known geothermal wells in the geothermal field are significantly controlled by faults, investigating the deep fault propagation holds critical significance for exploring the geothermal field’s potential geothermal resources. Due to the method limitations and the topographic influence, identifying thermal control faults through conventional geological route investigation or large-scale engineering is not applicable to the geothermal field. Therefore, a new technical method combining the penetrating soil radon measurement and the controlled source audio magnetotelluric (CSAMT) method was employed in this study to find concealed faults and delineate potential geothermal areas. Based on the measured surface soil radon concentration anomaly data and the subsurface electrical structure model derived from the CSAMT data inversion, this study inferred six new concealed faults on the basis of corroborating the known faults, predicted two potential geothermal areas, and built a conceptual model for the Tangyu geothermal field. As revealed by the results, the soil radon concentrations at concealed faults are much higher than the regional background value, and the concealed faults are located in the low-resistivity fracture zones as indicated by the apparent resistivity results based on CSAMT data inversion. Besides, the two potential geothermal areas spread from 450~750 m and 850~1 150 m on the profile, respectively, at depths of approximately 250~300 m. This study concludes that the geothermal field resides in a low-resistivity region with soil radon anomalies three times the regional background value. The results of this study provide a reference for the subsequent sustainable production and utilization of potential geothermal resources in the region.

Key wordssoil radon measurement    CSAMT    concealed fault    geothermal resource    Tangyu
收稿日期: 2023-01-03      修回日期: 2023-04-11      出版日期: 2023-10-20
ZTFLH:  P631  
基金资助:中国地质调查局国土空间生态地质调查及修复项目“西安城市群周边健康地质调查试点”(DD20211574)
通讯作者: 刘诚
作者简介: 薛东旭(1996-),男,工程师,硕士,2021年毕业于中国地质大学(北京)地球探测与信息技术专业,主要从事地球物理方法研究及应用工作。Email:18645810303@163.com
引用本文:   
薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0010      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1169
Fig.1  研究区大地构造位置(a)和地质(b)(据文献[3,20]修改)
1—第四系全新统;2—第四系上更新统;3—斜长角闪片麻岩;4—混合岩化片麻岩;5—糜棱岩化花岗岩;6—片麻状花岗岩;7—地层界线;8—断裂构造;9—地热井;10—河流水系;11—公路;12—研究区范围
采样点编号 采样位置 井深/m 空气氡浓度/
(Bq·m-3)
水中氡含量/
(Bq·L-1)
238U含量
(μg·L-1)
226Ra含量/
(Bq·L-1)
1号井 太白山国家森林公园 300 20.85 18.5 7.58 0.100
2号井 眉县汤峪疗养院 400.18 22.15 12.4 57.70 0.074
6号井 太白山青园山庄温泉 400 19.95 30.2 0.47 0.027
7号井 眉县汤峪温泉 350 59.45 19.4 3.15 0.054
1 居民家自来水 9.82 2.7
2 居民家自来水 8.05 2.4
Table 1  眉县汤峪地热温泉放射性指标检测结果
类别 岩石名称 标本数量 η/% ρs/(Ω·m)
最大值 最小值 平均值 最大值 最小值 平均值
沉积岩 砂岩 14 3.01 0.44 1.93 31191 1872 9136
断层角砾岩 9 5.76 1.61 3.23 80973 831 25433
变质岩 斜长角闪岩 11 3.16 1.23 1.94 39914 1802 13352
大理岩 5 2.94 0.88 1.97 90850 5803 33743
片麻岩 246 6.17 0.94 2.40 37474 587 5448
侵入岩 花岗岩 45 7.92 0.26 3.27 26149 863 6043
Table 2  研究区地层物性特征统计[32]
Fig.2  标量CSAMT测量装置平面示意
Fig.3  研究区土壤氡浓度平面
Fig.4  联合剖面Ⅰ综合解释推断
Fig.5  典型测点视电阻率和阻抗相位曲线
Fig.6  眉县汤峪地热田概念模型
[1] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1):1-9.
doi: 10.13745/j.esf.2020.1.1
[1] Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Froniters, 2020, 27(1):1-9.
[2] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4):449-459.
[2] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4):449-459.
[3] 张鹏, 端木合顺, 端木辉, 等. 陕西省眉县汤峪地热田地质特征与成因分析[J]. 地质调查与研究, 2014, 37(1):27-33.
[3] Zhang P, Duanmu H S, Duanmu H, et al. Geological characteristics and cause analysis for Tangyu geothermal field in Mei Country,Shaanxi Province[J]. Geological Survey and Research, 2014, 37(1):27-33.
[4] 马岩, 张保建, 闫金凯, 等. 雄安新区深部储热构造探测研究与地热井优选技术[J]. 地球学报, 2022, 43(5):699-710.
[4] Ma Y, Zhang B J, Yan J K, et al. Deep geothermal reservoir structure detection and geothermal well optimization technology in Xiongan new area[J]. Acta Geoscientica Sinica, 2022, 43(5):699-710.
[5] Jiang G Z, Hu S B, Shi Y Z, et al. Terrestrial heat flow of continental China:Updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753:36-48.
doi: 10.1016/j.tecto.2019.01.006
[6] 邓亚仁, 任战利, 任文波. 关中地区地热分布控制因素与地热开发前景[J]. 西部大开发:土地开发工程研究, 2017, 2(11):19-27.
[6] Deng Y R, Ren Z L, Ren W B. Geothermal distribution control factors and geothermal prospect in Guanzhong region[J]. Western Development:Land Development Project Research, 2017, 2(11):19-27.
[7] 张健, 董淼, 王蓓羽, 等. 陕西关中盆地地热资源及壳幔温度结构的地球物理分析[J]. 地球科学与环境学报, 2021, 43(1):150-163.
[7] Zhang J, Dong M, Wang B Y, et al. Geophysical analysis of geothermal resources and temperature structure of crust and upper mantle beneath Guanzhong basin of Shaanxi,China[J]. Journal of Earth Sciences and Environment, 2021, 43(1):150-163.
[8] 洪增林, 张银龙, 周阳. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质, 2019, 46(5):1224-1235.
[8] Hong Z L, Zhang Y L, Zhou Y. Research on the modes of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in Southern Guanzhong basin[J], Geology in China, 2019, 46(5):1224-1235.
[9] 张胜, 刘晓华, 李文超. 关中地区地热分布控制因素与地热开发前景[J]. 资源节约与环保, 2019(10):116.
[9] Zhang S, Liu X H, Li W C. Geothermal distribution control factors and geothermal development prospects in Guanzhong region[J]. Resource Conservation and Environmental Protecion, 2019(10):116.
[10] 李兆雨, 李永项, 李文厚, 等. 汾渭盆地古近系—新近系沉积特征[J]. 地质科学, 2021, 56(4):1120-1133.
[10] Li Z Y, Li Y X, Li W H, et al. Sedimentary characteristics of Paleogene-Neogene in Fenwei basin[J]. Chinese Journal of Geology, 2021, 56(4):1120-1133.
[11] 李富, 周洪福, 唐文清, 等. 物化探方法在隐伏活动断裂探测中综合研究——以安宁河秧财沟断裂为例[J]. 地球物理学进展, 2019, 34(3):1199-1205.
[11] Li F, Zhou H F, Tang W Q, et al. Comprehensive study of geophysical and geochemical methods in detecting buried active faults:Taking the Yangcaigou fault in Anning river as an example[J]. Progress in Geophysics, 2019, 34(3):1199-1205.
[12] 张晓亮, 白凌燕, 倪敬波, 等. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2):344-351.
[12] Zhang X L, Bai L Y, Ni J B, et al. Relationship between concealed faults and radon concentration in plain areas of Beijing[J]. Geophysical and Geochemical Exploration, 2022, 46(2):344-351.
[13] 陈松, 庞凯旋, 陈长敬, 等. 基于音频大地电磁测深和高密度电法的城市隐伏断裂联合探测[J]. 工程地球物理学报, 2020, 17(4):470-477.
[13] Chen S, Pang K X, Chen C J, et al. Joint detection of urban buried faults with audio magnetotelluric sounding and high density resistivity method[J]. Chinese Journal of Engineering Geophysics, 2020, 17(4):470-477.
[14] 朱怀亮, 胥博文, 刘志龙, 等. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4):718-725.
[14] Zhu H L, Xu B W, Liu Z L, et al. The application of magnetotelluric sounding to geothermal resources assessment in Yinchuan basin[J]. Geophysical and Geochemical Exploration, 2019, 43(4):718-725.
[15] 吴奇, 许立青, 李三忠, 等. 华北地块中部活动构造特征及汾渭地堑成因探讨[J]. 地学前缘, 2013, 20(4):104-114.
[15] Wu Q, Xu L Q, Li S Z, et al. Active tectonics in the Central North China block and the cause of the formation of the Fenwei graben[J]. Earth Science Frontiers, 2013, 20(4):104-114.
[16] 李承东, 赵利刚, 许雅雯, 等. 北秦岭宽坪岩群变质沉积岩年代学及地质意义[J]. 中国地质, 2018, 45(5):992-1010.
[16] Li C D, Zhao L G, Xu Y W, et al. Chronology of metasedimentary rocks from Kuanping group complex in North Qinling belt and its geological significance[J]. Geology in China, 2018, 45(5):992-1010.
[17] 闫全人, 王宗起, 陈隽璐, 等. 北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J]. 地质学报, 2007, 81(4):488-500,583-584.
[17] Yan Q R, Wang Z Q, Chen X L, et al. Tectonic setting and SHRIMP age of volcanic rocks in the Xieyuguan and Caotangou groups:Implications for the north Qinling orogenic belt[J]. Acta Geologica Sinica, 2007, 81(4):488-500,583-584.
doi: 10.1111/acgs.2007.81.issue-3
[18] 王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨:来自宽坪杂岩变碎屑岩锆石U-Pb年代学与变质作用证据[J]. 岩石学报, 2021, 37(5):1489-1514.
[18] Wang H J, Chen D L, Ren Y F, et al. The relationship between the North Qinlin Belt and the North China Craton:Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex[J]. Acta Petrologica Sinica, 2021, 37(5):1489-1514.
doi: 10.18654/1000-0569/2021.05.10
[19] 李晓, 秦江锋, 周旭晨, 等. 秦岭群混合岩中花岗质脉体成因及锆石结晶机理[J]. 西安科技大学学报, 2022, 42(4):733-741.
[19] Li X, Qin J F, Zhou X C, et al. Petrogenesis of the leucogranite veins and zircon crystallization process in the Qinling magmatic complex[J]. Journal of Xi’an University of Science and Technology, 2022, 42(4):733-741.
[20] 尚海敏, 于进庆, 王文科, 等. 关中盆地秦岭山前地下热水的循环机理[J]. 水文地质工程地质, 2015, 42(4):150-155,170.
[20] Shang H M, Yu J Q, Wang W K, et al. Circulating mechanism of geothermal fluids in the submountain region of the Southern Guanzhong basin[J]. Hydrogeology & Engineering Geology, 2015, 42(4):150-155,170.
[21] 周阳, 洪增林, 张卉, 等. 关中盆地浅层地热能赋存规律及资源量估算[J]. 中国地质调查, 2020, 7(2):21-29.
[21] Zhou Y, Hong Z L, Zhang H, et al. Occurrence rules and resource estimation of shallow geothermal energy in Guanzhong basin[J]. Geological Survey of China, 2020, 7(2):21-29.
[22] 校培喜, 张俊雅, 王洪亮, 等. 北秦岭太白岩体岩石谱系单位划分及侵位时代确定[J]. 西北地质科学, 2000, 21(2):37-45.
[22] Xiao P X, Zang J Y, Wang H L, et al. Subdivision of rock series units and determination of intrusion age of Taibai rock mass in North Qinling[J]. Northwest Geoscience, 2000, 21(2):37-45.
[23] 王敬宇. 北秦岭宽坪群浅变质沉积岩沉积时代、物质源区和构造背景[D]. 西安: 西北大学, 2019.
[23] Wang J Y. Depositional age, Provenance and tectonic setting of the Kuanping group in the North Qinling orogenic belt, China[D]. Xi’an: Northwest University, 2019.
[24] 张志华, 赖绍聪, 秦江锋. 北秦岭太白山晚中生代正长花岗岩成因及其地质意义[J]. 岩石学报, 2014, 30(11):3242-3254.
[24] Zhang Z H, Lai S C, Qin J F. Petrogenesis and its geological significance of the Late Mesozoic syengranite from the Taibai mountain,North Qinling[J]. Acta Petrologica Sinica, 2014, 30(11):3242-3254.
[25] 侯建军, 韩慕康, 张保增, 等. 秦岭北麓断裂带晚第四纪活动的地貌表现[J]. 地理学报, 1995, 50(2):138-146.
doi: 10.11821/xb199502005
[25] Hou J J, Han M K, Zhang B Z, et al. Geomorphic expressions of the activity alone North Qinling piedmont fault zone in the Late Quaternary Period[J]. Acta Geographica Sinica, 1995, 50(2):138-146.
[26] 王泽龙. 北京市小汤山地区地温场特征及地下热水成因模式分析[D]. 北京: 中国地质大学(北京), 2007.
[26] Wang Z L. Characteristics of the geothermal field and formation of the thermal groudwater in the Xiaotangshan area of Beijing[D]. Beijing: China University of Geosciences(Beijing), 2007.
[27] 柯柏林. 北京市平原区北部孙河断裂的地热地质特征[J]. 现代地质, 2009, 23(1):43-48.
[27] Ke B L. Geothermal and geological features of Sunhe fault in the Northern part of Beijing plain[J]. Geoscience, 2009, 23(1):43-48.
[28] 毛翔, 汪新伟, 郭世炎, 等. 高阳地热田及邻区地热资源形成机制[J]. 中国岩溶, 2021, 40(2):273-280.
[28] Mao X, Wang X W, Guo S Y, et al. Genetic mechanism of geothermal resources in the Gaoyang geothermal field and adjacent areas[J]. Carsologica Sinica, 2021, 40(2):273-280.
[29] 黄理善, 侯一俊, 陈远荣, 等. 基于物探-化探技术快速精确定位评价城市及周边隐伏断层——以广西桂林市临桂区为例[J]. 中国地质, 2022, 49(3):929-942.
[29] Huang L S, Hou Y J, Chen Y R, et al. Rapid and accurate positioning concealed fault using geophysical and geochemical techniques in cities and surrounding areas—A case study of Lingui district,Guilin City,Guangxi[J]. Geology in China, 2022, 49(3):929-942.
[30] 张志勇, 王强. 新沂土壤中氡浓度的放射性调查研究[J]. 能源技术与管理, 2014, 39(2):186-188.
[30] Zhang Z Y, Wang Q. Radiological investigation study of radon concentration in Xinyi soil[J]. Energy Technology and Management, 2014, 39(2):186-188.
[31] 马永, 高冰莹, 金大利, 等. 宝坻断裂土壤氡气观测技术与应用[J]. 大地测量与地球动力学, 2019, 39(7):756-759.
[31] Ma Y, Gao B Y, Jin D L, et al. Technique and application of soil radon observation in the Baodi fault[J]. Journal of Geodesy and Geodynamics, 2019, 39(7):756-759.
[32] 刘亮, 梁斌, 燕中林, 等. 龙泉山断裂带隐伏断层氡气特征及其活动性分析[J]. 沉积与特提斯地质, 2019, 39(2):45-53.
[32] Liu L, Liang B, Yan Z L, et al. Soil gas radon and fault activity in the Longquanshan fault zone,Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2):45-53.
[33] Chen J, Ford K L. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities[J]. Journal of Environmental Radioactivity, 2017, 166(1):152-156.
doi: 10.1016/j.jenvrad.2016.01.018
[34] 程业勋. 环境中氡及其子体的危害与控制[J]. 现代地质, 2008, 22(5):857-868.
[34] Cheng Y X. Hazard and control measures of radon and its progenies in the environment[J]. Geoscience, 2008, 22(5):857-868.
[35] 张利明, 凌丹丹. 激电测量在秦岭山前构造研究中的应用[J]. 西部探矿工程, 2019, 31(1):160-165.
[35] Zhang L M, Ling D D. Application of excitation measurements in the study of mountain front tectonics in the Qinling mountains[J]. West-China Exploration Engineering, 2019, 31(1):160-165.
[36] 孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017, 41(1):52-57.
[36] Sun Z R, Yang D C, Zhao X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1):52-57.
[37] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2):290-297.
[37] Sun H C, Liu Y L, Shao C L. The application of integrated geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration, 2019, 43(2):290-297.
[38] Miklyaev P S, Petrova T B. Study of abnormal seasonal variations in the radon exhalation rate in a fault zone[J]. Geochemistry International, 2021, 59(4):435-447.
doi: 10.1134/S0016702921040042
[39] 李杰彪, 周志超, 云龙, 等. 基于土壤氡气测量识别甘肃北山南缘隐伏断裂[J]. 地质学报, 2022, 96(6):2240-2250.
[39] Li J B, Zhou Z C, Yun L, et al. Indentification of hadden faults based on soil radon measurement in the southern margin of the Beishan area,Gansu Province[J]. Acta Geologica Sinica, 2022, 96(6):2240-2250.
[40] Teuku A S. Identification of Lembang fault,West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT)[J]. Aip Conference Proceedings, 2017, 1861(1):030002.
[41] Hou, D Y, Xue G Q, Zhou N N, et al. Comparison between different apparent resistivity definitions of CSAMT[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(1):119-127.
doi: 10.2113/JEEG24.1.119
[42] 任小庆, 余鸿, 罗娜宁, 等. CSAMT法在福建省惠安地热勘查中的应用[J]. 现代地质, 2022, 36(2):515-523.
[42] Ren X Q, Yu H, Luo N N, et al. Application of CSAMT in geothermal exploration in Hui’an,Fujian Province[J]. Geoscience, 2022, 36(2):515-523.
[43] 任文波. 渭河盆地中深层地热资源特征及开发利用[D]. 西安: 西北大学, 2019.
[43] Ren W B. Characteristics and development of geothermal resources in the middle and deep layers of the Weihe basin[D]. Xi’an: Northwest University, 2019.
[44] 穆根胥, 李锋, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016.
[44] Mu G X, Li F, Yan W Z, et al. Geothermal resource fugacity law and key technology for development and utilization in the Guanzhong basin[M]. Beijing: Geological Publishing House, 2016.
[45] 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京), 2015.
[45] Sun H L. The bearing features and genetic model for geothermal resources in Guanzhong basin[D]. Beijing: China University of Geosciences(Beijing), 2015.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[3] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[4] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[5] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
[6] 张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
[7] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[8] 虎新军, 陈晓晶, 李宁生, 仵阳, 陈涛涛. 银川盆地东缘黄河断裂展布特征新认识[J]. 物探与化探, 2021, 45(4): 913-922.
[9] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[10] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[11] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[12] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[13] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[14] 李麒麟, 李荣亮, 苏海伦, 刘洋, 曹自才. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008.
[15] 吴旭亮, 武勇强, 李茂. 浩然柴达木地区下白垩统华池—环河组砂体发育特征[J]. 物探与化探, 2020, 44(4): 742-747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com