Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 775-781    DOI: 10.11720/wtyht.2023.1150
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
超声提取—离子选择电极法测定化肥样品中的氟
刘彬1(), 徐进力1(), 杜雪苗1, 唐瑞玲1, 张鹏鹏1, 白金峰1, 于林松2, 万方2
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.山东省物化探勘查院,山东 济南 250013
Determination of fluorine content in chemical fertilizer samples using the ultrasonic extraction-ion selective electrode method
LIU Bin1(), XU Jin-Li1(), DU Xue-Miao1, TANG Rui-Ling1, ZHANG Peng-Peng1, BAI Jin-Feng1, YU Lin-Song2, WAN Fang2
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
全文: PDF(624 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

全国土地质量地球化学调查结果显示,我国氟过剩的土地面积约31.5万km2。氟作为一种与人体健康密切相关的元素而得到广泛关注和研究,尤其近年来农业活动中高氟化肥的使用成为土壤中氟的潜在来源,其在土壤、动植物体中的循环迁移方式尚待深入研究。为了迎接新一轮全国土壤普查和现代健康地质调查,需要研究建立准确测定化肥中的氟含量的分析方法。本次实验对比研究了HCl煮沸提取、HCl常温超声提取、NaOH熔融水提取、Na2O2熔融水提取4种不同的样品分解方式,结果表明:采用HCl常温超声提取分解样品,NaOH-H2SO4调节酸度,柠檬酸钠做离子缓冲剂是最佳的样品前处理方式; 并对超声提取时间及提取温度进行了考察,确定了超声提取时间为20 min,提取温度为20 ℃;在最佳的样品前处理条件下,测定了方法的主要质量参数:检出限1.63×10-6、精密度0.98%、回收率在91%~108%。该方法前处理简便快速、易于操作,以分段建立标准曲线的模式,测定的质量参数完全能够满足化肥的分析要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘彬
徐进力
杜雪苗
唐瑞玲
张鹏鹏
白金峰
于林松
万方
关键词 离子选择电极法化肥超声提取    
Abstract

As shown by the geochemical survey of national land quality, the land with excess fluorine in China covers an area of about 315 000 km2. As an element closely related to human health, fluorine has received wide attention and has been studied. Especially in recent years, the high-fluorine fertilizers used in agricultural activities have become a potential source of fluorine in soils. Moreover, the circulation and migration patterns of fluorine in soils, animals, and plants are yet to be further investigated. To prepare for a new round of national soil survey and modern health-related geological survey, it is necessary to develop a method to accurately determine the fluorine content in chemical fertilizers. Through experiments, this study compared four methods for sample decomposition, namely the extraction methods based on HCl boiling, NaOH molten water, and the Na2O2 molten water and the HCl ultrasonic extraction method at room temperature. The results show that the optimal method for sample pretreatment is to extract and decompose samples using ultrasound and HCl at room temperature, adjust the acidity using NaOH-H2SO4, and take sodium citrate as the ion buffering agent. Through investigation, the ultrasonic extraction time and temperature were determined to be 20 min and 20 ℃, respectively. The main quality parameters of the method were determined under the optimal sample pretreatment conditions, including the limit of detection of 1.63×10-6, the precision of 0.98%, and the recovery rate of 91%~108%. The results of this study show that the pretreatment of this method is simple, fast, and easy to operate. With the mode of establishing standard curves in sections, the quality parameters determined can fully meet the requirements for the analysis of chemical fertilizers.

Key wordsion selective electrode method    fluorine    chemical fertilizer    ultrasonic extraction
收稿日期: 2022-03-30      修回日期: 2022-10-11      出版日期: 2023-06-20
ZTFLH:  O657.1  
  X830.2  
基金资助:国家重点研发计划项目(2021YFC2903001);中国地质调查局地质调查项目(DD20190518)
通讯作者: 徐进力(1982-),男,硕士,高级工程师,主要从事地球化学样样品配套分析方法研究工作。Email:80368070@qq.com
作者简介: 刘彬(1983-),女,学士,工程师,主要从事地球化学样品的分析测试工作。Email:cgslbin@mail.cgs.gov.cn
引用本文:   
刘彬, 徐进力, 杜雪苗, 唐瑞玲, 张鹏鹏, 白金峰, 于林松, 万方. 超声提取—离子选择电极法测定化肥样品中的氟[J]. 物探与化探, 2023, 47(3): 775-781.
LIU Bin, XU Jin-Li, DU Xue-Miao, TANG Rui-Ling, ZHANG Peng-Peng, BAI Jin-Feng, YU Lin-Song, WAN Fang. Determination of fluorine content in chemical fertilizer samples using the ultrasonic extraction-ion selective electrode method. Geophysical and Geochemical Exploration, 2023, 47(3): 775-781.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1150      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/775
提取方式 HCl煮
沸提取
HCl超
声提取
NaOH熔
融水提取
Na2O2
融水提取
空白电位值/mV 336 340 305 318
空白/10-6 2.10 1.95 16.80 19.60
化肥1/10-6 791 894 836 967
713 898 984 955
828 893 971 905
RSD/% 7.50 0.28 8.80 3.50
化肥2/10-6 45 79 48 70
50 76 59 79
52 78 51 84
RSD/% 7.40 2.02 11.20 9.20
Table 1  不同提取方式氟含量结果对比
Fig.1  不同超声条件下氟提取量结果对比
化肥类型 未加标测
定结果/10-6
加标测定
结果/10-6
加标量/
10-6
回收率/%
尿素 23.97 43.81 20 99.20
磷酸二铵1 23.76 42.02 20 91.33
磷酸二铵2 9699.99 18414.83 8000 108.94
黄金钾 914.11 1830.15 900 101.78
磷肥 8195.74 16894.82 8000 108.74
复合肥 9439.13 17748.39 8000 103.87
Table 2  不同类型化肥加标回收率
化肥类型 国标方法测
定结果/10-6
本文方法测定
结果/10-6
方法间
双差/%
磷酸二铵2 8516 9354 9.4
黄金钾肥1 907 964 6.0
黄金钾肥2 896 939 4.7
磷肥1 7582 7796 2.8
磷肥2 7657 7924 3.4
复合肥1 8028 8878 10.0
复合肥2 34 36 6.4
Table 3  本文方法与国标方法测定结果对比
化肥类型 样品个数 含量范围/10-6
尿素 34 3.03~6.66
磷酸二铵 31 10090~23290
黄金钾 10 924~1012
硝酸磷肥 13 7553~8891
碳酸氢铵/硫酸铵 6 4.50~7.08
Ⅰ类复合肥料 22 1903~15178
Ⅱ类复合肥料 4 4.74~10.20
Table 4  多种类型化肥样品中氟含量测定结果对比
[1] 何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1):87-93.
[1] He L L, He S Y, Chen Z Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1):87-93.
[2] 李静, 谢正苗, 徐建明, 等. 我国氟的土壤健康质量指标及评价方法的初步探讨[J]浙江大学学报, 2005, 31(5):593-597.
[2] Li J, Xie Z Y, Xu J M, et al. Preliminary study on guideline on soil health quality index of fluorine and method of its evaluation in China[J]. Journal of Zhejiang University, 2005, 31(5):593-597.
[3] Rajbala A, Sane A S, Zope J, et al. Oxidative stress in children with endemic skeletal fluorosis[J]. Panminerva Medica, 1997, 39(3):165-168.
pmid: 9360415
[4] 杨忠芳, 余涛, 李敏, 等. DZ/T 0295—2016土地质量地球化学评价规范[S].
[4] Yang Z F, Yu T, Li M, et al. DZ/T 0295—2016 Specification of land quality geochemical assessment[S].
[5] 李凤嫣, 蒋天宇, 余涛, 等. 环境中氟的来源及健康风险评估研究进展[J]. 岩矿测试, 2021, 40(6):793-807.
[5] Li F Y, Jiang T Y, Yu T, et al. Reviewon sources of fluorine in the environment and health risk assessment[J]. Rock and Mineral Analysis, 2021, 40(6):793-807.
[6] 李永华, 王五一, 侯少范. 我国地方性氟中毒病区环境氟的安全阈值[J]. 环境科学, 2002, 23(4):1l8-122.
[6] Li Y H, Wang W Y, Hou S F. Safety threshold of fluorine in endemic fluorosis regions in China[J]. Environmental Science, 2002, 23(4):1l8-122.
[7] 李明琴, 刘远明, 廖丽萍. 贵州地氟病与碘缺乏病区环境中氟和碘的研究[J]. 环境科学研究, 2001, 14(6):44-46.
[7] Li M Q, Liu Y M, Liao L P. Fluorine and iodine in the environment in epidemic fluorosis and iodine deficiency area in Guizhou[J]. Research of Environmental Sciences. 2001, 14(6):44-46.
[8] 涂成龙, 何令令, 崔丽峰, 等氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 30(1):21-29.
doi: 10.13287/j.1001-9332.201901.004
[8] Tu C L, He L L, Cui L F, et al. Environmental and geochemical behaviors of fluorine and its impacts on ecological environment[J]. Chinese Journal of Applied Ecology, 2019, 30(1):21-29.
[9] 潘自平, 刘新红, 孟伟, 等. 贵阳中心区土壤氟的地球化学特征及其环境质量评价[J]. 环境科学研究, 2019, 31(1):87-94.
[9] Pan Z P, Liu X H, Meng W, et al. Geochemical characteristics of fluorine in soils and its environmental quality in central district of Guiyang[J]. Research of Environmental Sciences, 2018,31 (l):87-94.
[10] 谷海峰, 栾文楼, 杜俊, 等. 冀中南平原土壤氟地球化学特征及其控制因素[J]. 物探化探 2011, 35(3):388-392.
[10] Gu H F, Luan W L, Du J, et al. Fluorine geochemistry of soil in central South Hebei plain and its controlling factors[J]. Geophysical and Geochemical Exploration, 2011, 35(3):388-392.
[11] 孙明山, 孙忠萍, 牛朝红, 等. 离子色谱法对生活饮用水中氟、氯、硫酸根、硝酸根阴离子的测定[J]. 农业与技术, 2007, 27(2):89-90.
[11] Sun M S, Sun Z P, Niu C H, et al. Determination of fluoride,chlorine,sulfate and nitrate anions in drinking water by ion chromatography[J]. Agriculture and Technology, 2007, 27(2):89-90.
[12] 曾江萍, 李小莉, 张楠, 等. 粉末压片制样—X射线荧光光谱法测定锂云母中的高含量氟[J]. 岩矿测试, 2019, 38(1):71-76.
[12] Zeng J P, Li X L, Zhang N, et al. Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2019, 38(1):71-76.
[13] 张玉明, 石庆. 氟试剂分光光度法测定氟化物的方法分析[J]. 水文, 2002, 22(6):50-53.
[13] Zhang Y M, Shi Q. Method analysis of fluoride reagent spectrophotometric determination of fluoride[J]. Journal of China Hydrology, 2002, 22(6):50-53.
[14] 叶家瑜, 江宝林. 区域地球化学勘查样品分析方法[M]. 北京: 地质出版社, 2004.
[14] Ye J Y, Jiang B L. Analysis method of regional geochemical exploration samples[M]. Beijing: Geological Publishing House, 2004.
[15] 李清彩, 赵庆令, 张洪民, 等. 离子选择性电极电位法测定钼矿石和钨矿石中氟[J]. 理化检验:化学分册, 2011, 47(8):932-934.
[15] Li Q C, Zhao Q L, Zhang H M, et al. Potentiometric determination of fluoride in ores of molybdenum and tungsten with fluoride ion-selective electrode[J]. Physical Testing and Chemical Analysis:Chemical Analysis, 2011, 47(8):932-934.
[16] 邓海文, 吴代赦, 陈成广. 碱熔一氟离子选择性电极法测定土壤氟含量[J]. 地球与环境, 2007, 35(3):284-287.
[16] Deng H W, Wu D S, Chen C G. Determination of fluorides in soils by the alkaline meling-fluoride ion-selective electrode method[J]. Earth and Environment, 2007, 35(3):284-287.
[17] 胡小玲, 李莉. 离子选择电极法测定植物叶片中的氟[J]. 化学分析计量, 2008, 17(3):48-49.
[17] Hu X L, Li L. Determination of fluoride in plant leaves by ion-selective electrode method[J]. Chemical Analysis and Meterage, 2008, 17(3):48-49.
[18] 肖细炼, 刘彬, 陈燕波, 等. 干法灰化—碱熔—离子选择性电极法测定植物样品中氟[J]. 理化检验:化学分册, 2017, 53(8):968-971.
[18] Xiao X L, Liu B, Chen Y B, et al. Determination of fluorine in plant samples by dry ashing alkali fusion ion selective electrode[J]. Physical Testing and Chemical Analysis:Chemical Analysis, 2017, 53(8):968-971.
[19] 胡红美, 郭远明, 孙秀梅, 等. 离子选择电极法测定生活饮用水中氟化物[J]. 中国无机分析化学, 2019, 3(3)13-16.
[19] Hu H M, Guo Y M, Sun X M, et al. Determination of fluoride in drinking water by ion selective electrode method[J]. Chinese Journal of Inorgainic Analytical Chemistry, 2019, 3(3)13-16.
[20] 赵庆武. 改良离子选择电极法测定水样中氟化物[J]. 应用化工, 2010, 39(11):1780-1782.
[20] Zhao Q W. Improved ion selective electrode determination of fluoride in water samples[J]. Applied Chemical Industry, 2010, 39(11):1780-1782.
[21] 李静, 关玉春, 王琳. 碱熔—离子选择电极法测定固体废物中氟[J]. 冶金分析, 2021, 41(8):84-90.
[21] Li J, Guan Y C, Wang L. Determination of fluorine in solid waste by alkali fusion-ion selective electrode method[J]. Metallurgical Analysis, 2021, 41(8):84-90.
[22] 尤素荔. 离子选择电极法测定水中氟化物[J]. 福建环境, 2001, 18(4):42-43.
[22] You S L. Monitoring the water's fluoride by ion selective electrode[J]. Fujian Environment, 2001, 18(4):42-43.
[23] 赵彦玲, 朱兰兰, 王璐, 等. 南极磷虾中氟含量的两种测定方法优化与比较[J]. 食品研究与开发, 2014, 35(9):100-103,119.
[23] Zhao Y L, Zhu L L, Wang L, et al. Comparison of two methods for the determination of fluorine content in Antarctic krill[J]. Food Research and Development, 2014, 35(9):100-103,119.
[24] 王芳, 王海峰, 徐建, 等. 高温燃烧水解—离子色谱法测定煤中氟和氯[J]. 化学分析计量, 2016, 25 (4): 27-30.
[24] Wang F, Wang H F, Xu J, et al. Determination of fluorine and chlorine in coal by high temperature combustion hydrolyzing-ion chromatography[J]. Chemical Analysis and Meterage, 2016, 25 (4): 27-30.
[25] Noguchi Y, Zhang L, Maruta T, et al. Simultaneous determination of fluorine,chlorine and bromine in cement with ion chromatographyafterpyrolysis[J]. Analytica Chimica Acta, 2009, 640(1/2):106-109.
doi: 10.1016/j.aca.2009.03.004
[26] 赵怀颖, 孙德忠, 曾亚萍, 等. 高温燃烧水解—离子色谱法测定植物样品中的氟[J]. 岩矿测试, 2011, 30(6):761-767.
[26] Zhao H Y, Sun D Z, Zeng Y P, et al. Quantification of fluorine in plants by high temperature combustion hydrolysis-ion chromatography[J]. Rock and Mineral Analysis, 2011, 30(6):761-767.
[27] 赵怀颖, 孙德忠, 吕庆斌. 燃烧水解—离子选择性电极法测定植物样品中氟含量的方法改进[J]. 岩矿测试, 2010, 29(1):39-42.
[27] Zhao H Y, Sun D Z, Lyu Q B. Determination of flouride in plant samples by combustion hydrolysis-ion selective electrode method[J]. Rock and Mineral Analysis, 2010, 29(1):39-42.
[28] 韩张雄, 马娅妮, 刘琦, 等. 微波消解—离子选择电极法测定植物样品中氟离子的实验条件优化[J]. 岩矿测试, 2016, 35(4):397-401.
[28] Han Z X, Ma Y N, Liu Q, et al. Optimal conditions for determination of fluoride in plant samples by microwave digestion coupled with ion selective electrode method[J]. Rock and Mineral Analysis, 2016, 35(4):397-401.
[29] 吴勣, 孙明星, 高运川, 等. 离子色谱法测定化肥中六种阴离子[J]. 理化检测:化学分册, 2011, 47(1):24-26.
[29] Wu J, Sun M X, Gao Y C, et al. IC determination of 6 anions in chemical fertilizers[J]. Physical Testing and Chemical Analysis:Chemical Analysis, 2011, 47(1):24-26.
[30] 丁方军, 张娟, 林建, 等. GB/T 32954—2016化肥中氟化物的测定——离子选择电极法[S].
[30] Ding F J, Zhang J, Lin J, et al. GB/T 32954—2016 Determination of fluoride content for fertilizer-ion electrode method[S].
[31] 李红霞. 四元体系NaF-Na3PO4-NaOH-H2O及其子体系离子浓度测定方法探究[J]. 冶金分析, 2020, 40(11):78-85.
[31] Li H X. Study on determination method of ion concentration in quaternary NaF-Na3PO4-NaOH-H2O system and its subsystems[J]. Metallurgical Analysis, 2020, 40(11):78-85.
[1] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[2] 马常莲, 周金龙, 曾妍妍, 任贵兵, 王松涛. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
[3] 申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.
[4] 李朋飞, 陈富荣, 杜国强, 陶春军, 刘超, 刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[5] 王卫星, 曹淑萍, 李攻科, 张亚娜. 津北水土环境氟地球化学特征及其环境质量评价[J]. 物探与化探, 2020, 44(1): 207-214.
[6] 韩晔, 郑玉萍, 张涛, 李立伟, 马超. 山东省高密市高氟区地球化学及水文地球化学特征[J]. 物探与化探, 2013, 37(6): 1107-1113.
[7] 王存龙, 王增辉, 陈磊, 王红晋, 郑伟军, 胡雪平. 寿光市高氟地下水的分布规律和成因[J]. 物探与化探, 2012, 36(2): 267-272.
[8] 谷海峰, 栾文楼, 杜俊, 陈志贤, 蔡奎, 李超. 冀中南平原土壤氟地球化学特征及其控制因素[J]. 物探与化探, 2011, 35(3): 388-392.
[9] 陈华英, 詹玉亭. 安溪县光德村地氟病区生态地球化学特征[J]. 物探与化探, 2009, 33(1): 77-79.
[10] 郭友钊, 余煦明, 郑文, 周国华, 刘占元, 李磊, 孙彬彬. 提高化肥利用率途径的土壤磁学研究[J]. 物探与化探, 2005, 29(1): 66-70.
[11] 李琳. 利用液相色谱仪测定水中氟离子氯离子硫酸根[J]. 物探与化探, 1999, 23(6): 474-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com