高密地区灌溉水及土壤氟地球化学特征
Geochemical characteristics of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China
责任编辑: 蒋实
收稿日期: 2022-10-20 修回日期: 2023-01-12
基金资助: |
|
Received: 2022-10-20 Revised: 2023-01-12
作者简介 About authors
姜冰(1984-),男,高级工程师,主要从事生态环境地球化学研究工作。Email:
为研究高密地区灌溉水及土壤氟的分布规律及影响因素,通过系统采样测试,获得了灌溉水pH值、氟化物含量及土壤pH、有机质、氟含量等数据,绘制了地球化学等值线图,进行了统计、相关性和差异性分析,探讨了影响因素。结果表明,研究区灌溉水氟化物含量均值为1.89 mg/L,空间变异性强,高值区分布在北部低平冲积平原区,大于2 mg/L的样本数占比63.16%,与水质pH值呈显著正相关(P < 0.01);土壤氟含量均值为455×10-6,空间分布较不均匀,氟高和过剩的区域分布在研究区北部,土壤氟与土壤pH、有机质、灌溉水氟化物均呈显著正相关(P < 0.01);砂姜黑土分布范围内,灌溉水氟化物含量和土壤氟含量高。本研究揭示了高密地区灌溉水氟化物和土壤氟的本底特征及影响因素,可为精准防治地方性氟中毒提供地球化学依据。
关键词:
This study aims to ascertain the distribution patterns and influencing factors of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China. Through systematic sampling and testing, this study obtained data including the pH and fluoride concentration of irrigation water and the pH, organic matter, and fluorine concentration of soils. Based on these data, this study plotted the geochemical contour maps for statistical, correlation, and difference analyses. Furthermore, this study explored the influencing factors. The results are as follows: (1) The irrigation water in the study area has a fluoride concentration of 1.89 mg/L on average, which shows strong spatial variability. Zones with high fluoride concentrations in irrigation water are distributed in the northern low-flat alluvial plain, with the number of samples with fluoride concentrations greater than 2 mg/L accounting for 63.16%. There is a significant positive correlation between the fluoride concentration in the irrigation water and the pH (P < 0.01); (2) The soils have a fluoride concentration of 455×10-6 on average, which shows an inhomogeneous spatial distribution. Zones with high or excess fluorine concentrations are distributed in the northern part of the study area. The fluorine concentrations of soils show significant positive correlations with the pH and organic matter of soils and the fluoride concentration of irrigation water (P < 0.01); (3) The fluoride concentrations in the irrigation water and soils are high in the distribution area of lime concretion black soil. The results of this study reveal the background characteristics and influencing factors of fluoride in the irrigation water and soils of the Gaomi area, providing a geochemical basis for the precise prevention and control of endemic fluorosis.
Keywords:
本文引用格式
姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健.
JIANG Bing, LIU Yang, WU Zhen, ZHANG De-Ming, SUN Zeng-Bing, MA Jian.
0 引言
氟是人体必需的微量元素,其具有双阈值性[1]。氟对牙齿和骨骼的形成与结构具有重要功能,但氟过量又会对人体产生不良影响,引起骨硬化、韧带钙化等症状,还会影响骨骼发育,造成氟斑牙和氟骨症,形成地方性氟中毒(地氟病)[2-3]。氟元素在成土母岩风化过程中有较高的活性,可以富集于可溶性载体中,借助水体介质迁移,其迁移聚集状况受现今环境,如气候、地形、地貌等的制约[4-5]。氟在水与土壤间的转化是可逆的[6],且受到土壤类型、土壤理化性质等多种因素的影响。于群英等[7]研究得出安徽省不同土壤类型氟含量差异显著,成土母质是主要影响因素,土壤腐殖质能够吸附固定氟,土壤pH与水溶氟呈显著正相关。侯拓等[3]研究发现山东桓台地区土壤氟在垂向上含量变化不大,受成土作用过程控制显著,同时与土壤pH、有机质呈显著正相关。孙英等[8]揭示了塔里木盆地南缘山区周围分布的高氟岩石和矿物是绿洲带地下水氟的补给源,经过渡区至蒸发区迁移,干旱的气候条件是地下水氟富集的主要原因,氟富集时pH值也较大。杨笑笑等[9]研究发现珠三角新会地区高氟土壤具有地质地形背景控制的显著特征,高氟土壤与上全新统灯笼沙组的分布范围具耦合关系,土壤氟与pH、N、有机质等均呈显著正相关。鲁涵等[10]研究认为新疆喀什巴楚县平原区地下水氟的富集主要受气候条件、地形因素、水文地质条件等的影响,水质呈弱碱性时易出现高氟地下水。通过研读文献可知,前人对水和土壤氟的地球化学特征研究所采集的样本数量普遍不多,虽揭示的规律和现象具有显著的参考意义,但在调查研究精度以及明确高氟水和土壤分布范围方面有所欠缺。本研究基于大样本调查数据,旨在为高密地区灌溉水和土壤中氟含量的本底特征统计及其影响因素分析提供真实、可靠的数据基础。
1 研究区概况
高密市是山东省潍坊市的一个县级市,地处山东半岛中部,胶莱平原腹地,面积1 525.7 km2,属暖温带半湿润季风气候,年均降水量689.1 mm,南部雨量偏大,一般为700~720 mm,北部偏小,为645~680 mm,年均蒸发量1 227.6 mm。研究区总体地势南高北低,地面总坡度约1/600,南部为低缓丘陵,属泰沂山区末端,发育中生界白垩系莱阳群、青山群、王氏群地层,对应分布碎屑岩类孔隙裂隙水和小范围基岩裂隙水;中部为缓平剥蚀平原,地形起伏小,河流南北走向,形成滨河平地和低分水岭地;北部为低平冲积平原,地势低洼、平坦,水系多汇于此。中部和北部对应分布松散岩类孔隙水,土壤类型自南向北总体分为粗骨土、棕壤、褐土、潮土、砂姜黑土等5个土类(图1)。
图1
图1
研究区土壤类型及灌溉水样点分布
Fig.1
Soil types and distribution of irrigation water samples in the study area
2 材料与方法
2.1 样品采集及加工
2.1.1 土壤样品
以网格状均匀布设的原则,兼顾样点代表性,以样点为中心,在周边50~100 m范围内,采用“S”形或“X”形设定分样点多点采集0~20 cm表层土壤,分样点的采样部位、深度和质量一致,采集时挑出植物根系、石块等杂物,由4~6个分样等量混合组成1件样品,充分混匀,四分法缩分不少于1 kg装入干净棉布袋,放置通风阴凉处自然风干后移交实验室进行处理与测试。本次工作共采集土壤样品8 197件,采样密度约5.4件/km2。
2.1.2 灌溉水样品
灌溉水采集时间为农作物灌溉高峰期,即2020年4月,根据天然或人工水源分布情况,考虑样点灌溉控制范围,选择水系入口或渠首、渠中和灌溉口处均匀布设样点;浅层地下水灌溉区,按井水点分布情况布设样点;共采集井水84件、河水11件(分布点位见图1)。水样采集容器为2 L聚乙烯塑料瓶,采集前用采样点处水洗涤样瓶和塞盖2~3次,不加任何保护剂,供测pH值、F-。
2.2 样品处理与测试
样品加工、测试工作由山东省地质矿产勘查开发局海岸带地质环境保护重点实验室完成,参照《土地质量地球化学评价规范》(DZ/T 0295—2016)[14]进行样品处理与测试。使用PHS-3C型精密pH计,采用玻璃电极法测定水质pH值[15];使用雷磁PXSJ-216F型氟离子计,采用离子选择电极法测定水质氟化物[16];土壤样品经木棒敲碎后全部过2 mm孔径尼龙筛,混匀后四分法分为若干份,一份经水浸提(水土比为2.5∶1),采用电位法测定土壤pH[17],一份过0.25 mm孔径尼龙筛后,经油浴加热,采用重铬酸钾氧化法测定有机质[18],一份过0.149 mm孔径尼龙筛后,经氢氧化钠碱熔,采用氟离子选择电极法测定土壤氟[19]。样品检出率均为100%,用国家一级标准物质(GBW系列)检验分析方法准确度和精密度,合格率均为100%,pH绝对偏差小于0.1,测试结果和数据质量满足要求。
2.3 数据处理及空间制图
受自然条件突变的影响,分析数据中可能存在明显偏离的异常值,其不具代表性,且会干扰数据分析结果的稳定性[20],采用Microsoft Excel 2010软件,利用正态分布的3σ原则对异常值进行剔除后,进行统计分析,其中土壤pH统计剔除H+浓度异常值后换算的pH值。采用IBM SPSS Statistics 22.0软件进行双尾显著性检验和Pearson相关性分析,将剔除异常值后形成的缺失值及与缺失值有检验分析关系的变量成对排除。绘制地球化学图时,异常值用平均值加(减)3倍标准差代替,采用MapGIS软件数字地面模型(digital terrain model, DTM)分析,生成不规则三角网(triangulated irregular network, TIN),绘制地球化学图。
3 结果与分析
研究区灌溉水氟化物(以F-计)、土壤氟及土壤理化指标统计参数如表1所示。
表1 氟含量及土壤理化指标描述性统计
Table 1
指标 | 统计数 | 异常数 | 平均值 | 标准差 | 变异系数 | |
---|---|---|---|---|---|---|
灌 溉 水 | 氟化物/ (mg·L-1) | 92 | 3 | 1.89 | 1.85 | 0.98 |
pH值 | 91 | 4 | 7.81 | 0.25 | 0.03 | |
土 壤 | 氟/10-6 | 8066 | 131 | 455 | 167 | 0.37 |
有机质/10-3 | 8116 | 81 | 16.28 | 5.68 | 0.35 | |
pH值 | 8033 | 164 | 7.11 | 1.02 | 0.14 |
3.1 灌溉水氟
3.1.1 灌溉水氟化物地球化学特征
研究区灌溉水氟化物(以F-计)含量平均值为1.89 mg/L,变异系数达0.98(表1),空间分布差异性较大,易在局部富集。由图2可知,高值区主要分布在研究区北部低平冲积平原区,该区域地层主要发育第四系黑土湖组,土壤类型以砂姜黑土为主,土壤的透水性和富水性差,地势平坦,水体水平运动滞缓,仅有降水补给和蒸发排泄运动,且该区蒸发量显著大于降水量,为高氟灌溉水的形成提供了有利条件[11]。参照《农田灌溉水质标准》(GB 5084—2021)[21]中的农田灌溉水质氟化物限值,大于2 mg/L(一般地区)的样本数有37个,占38.95%,大于3 mg/L(高氟区)的样本数有23个,占24.21%,表明研究区灌溉水氟化物超标情况较为严重。
图2
3.1.2 灌溉水氟化物影响因素分析
高密地区南部发育的白垩系青山群碎屑岩类、火山岩类和王氏群沉积碎屑岩类是该区主要的供氟源,岩石中含氟高,氟的易溶性强,岩石经风化和淋溶作用析出大量氟,经地表和地下径流迁移至该区北部低洼处富集[6,12],使地表和地下水富氟。水质pH值高可促使含氟硅酸盐矿物溶解,使氟析出,增加水中氟含量[22]。将研究区灌溉水氟化物和水质pH值的异常值剔除后,同时成对删除与缺失值有检验分析关系的变量,进行Pearson相关分析,灌溉水氟化物含量与水质pH值的相关系数r = 0.406(n = 88,P < 0.01),表明灌溉水氟化物受水质pH值影响,随水质pH值的升高而增加。已有研究证实高氟地下水一般呈弱碱性,氟离子在弱碱性环境下较为活泼,水中OH-易将F-从含氟矿物晶格表面置换出来,从而使F-浓度增加[10,23]。
3.2 土壤氟
3.2.1 土壤氟地球化学特征
研究区表层土壤氟含量平均值为455×10-6,变异系数为0.37(表1),空间分布较不均匀。参照《土地质量地球化学评价规范》(DZ/T 0295—2016)中的土壤氟等级划分标准,即w(F)≤400×10-6为缺乏、(400~500)×10-6为边缘、(500~550)×10-6为适量、(550~700)×10-6为高、w(F)>700×10-6为过剩,绘制土壤氟地球化学等级图(图3),氟高和过剩的区域集中分布在研究区北部,与砂姜黑土分布范围契合,氟缺乏主要分布在南部低缓丘陵区,表明地形地貌、水文地质等条件制约了土壤类型的分布,同时对土壤氟有重要影响。值得注意的是,五龙河上游、胶河、胶莱河的沿线地带出现了低氟带,推断是由于这些河流为常年性河流,水流更替速度快,沿岸岩土体经历了脱氟作用,使得土壤氟含量明显降低,而其他河流多为季节性河流,年内大多数时间全流域或局部处于断流状态,因此水流对于岩土体的脱氟作用不明显。
图3
3.2.2 灌溉水和土壤理化指标对土壤氟的影响
将剔除异常值后形成的缺失值及与缺失值有检验分析关系的变量成对排除,进行Pearson相关分析,土壤氟与理化指标及灌溉水氟化物相关性分析结果如表2所示,土壤氟与土壤pH、有机质、灌溉水氟化物均呈显著正相关,相关系数分别为0.458(n= 7 902,P < 0.01)、0.411(n = 7 986,P < 0.01)、0.653(n = 91,P < 0.01)。土壤元素含量与土壤理化性质有着必然的联系,不同的成土母质和土壤类型也导致了土壤理化性质的差异[24]。研究区土壤氟含量随土壤pH的升高和有机质的积累而增加,土壤pH的升高致使氟的迁移活性增强,在土壤胶体表面,OH-逐步取代F-,F-逐步被释放[25],有机质含有多种类型的含氧官能团,连接着许多阳离子,为F-提供了吸附位,对F-起吸附固定作用[3],因此土壤的酸碱度和有机质含量影响着氟的迁移和积累。氟在水与土壤间的转化是可逆的,水中的氟化物含量升高会引起土壤氟含量的升高,土壤富氟同样会引起水中氟化物含量升高[6],因此灌溉水氟化物与对应点位土壤氟呈显著正相关。
表2 土壤氟与理化指标及灌溉水氟化物的相关性
Table 2
土壤pH | 土壤有机质 | 灌溉水氟化物 | |
---|---|---|---|
与土壤氟的 Pearson相关性 | 0.458** | 0.411** | 0.653** |
显著性(双尾) | 0 | 0 | 0 |
样品数 | 7902 | 7986 | 91 |
注:“** ”表示相关性达P < 0.01显著水平。
3.2.3 土壤类型对土壤氟的影响
剔除各类土壤氟含量异常值后的统计结果见表3,可见不同土壤类型中氟含量具有显著差异。砂姜黑土发育在大型洼地,成土母质为第四纪以来的浅湖相沉积物,土壤透水性和富水性差,质地黏重,含丰富的盐基和游离碳酸盐,数千年前湿生植物和水生草本植物曾茂密生长,其氟和有机质含量及土壤pH显著高于其他土壤类型,且显著高于潍坊市土壤背景值[26]。棕壤主要分布在南部的低缓丘陵区,已开垦为农田,土层浅薄,植被覆盖度低,且经受了较强烈的淋溶和黏化作用,可溶盐和盐基成分基本被淋失,一般呈酸性或微酸性,其氟和有机质含量及土壤pH显著低于其他土壤类型,且显著低于潍坊市土壤背景值。褐土发育在丘陵坡麓和山前平原,粗骨土发育在岩石残坡积风化物之上,潮土由近代河流沉积物发育而成。各土壤类型的成土条件和过程不同,理化性质也有所差异,导致了土壤氟含量的差异。
表3 不同土壤类型土壤氟、有机质和pH的对比
Table 3
指标 | 棕壤 | 褐土 | 粗骨土 | 砂姜黑土 | 潮土 | 潍坊市背景值[26] |
---|---|---|---|---|---|---|
土壤氟/10-6 | 306 ± 54 c | 362 ± 66 b | 346 ± 85 b | 547 ± 151 a | 358 ± 97 b | 469 |
土壤有机质/10-3 | 12.44 ± 4.37 e | 16.51 ± 5.32 b | 15.15 ± 4.82 c | 17.87 ± 5.29 a | 14.23 ± 6.01 d | 13.79 |
土壤pH | 5.71 ± 0.80 e | 6.39 ± 0.91 c | 5.86 ± 1.08 d | 7.64 ± 0.71 a | 7.11 ± 0.92 b | 7.43 |
注:表中同行不同小写字母表示不同土壤类型差异显著(P < 0.05);即a~e组,显著性差异由高到低。
4 结论
1)研究区灌溉水氟化物含量均值为1.89 mg/L,土壤氟含量均值为455×10-6,富氟灌溉水和土壤分布在北部低平冲积平原区,与砂姜黑土分布范围契合。灌溉水氟化物含量与水质pH呈显著正相关,土壤氟含量与土壤pH、有机质含量呈显著正相关。土壤氟含量与灌溉水氟化物含量呈显著正相关,氟在水与土壤间的转化具有可逆性。
2)不同土壤类型成土条件、成土过程不同,土壤理化性质有所差异,对土壤氟含量也形成了差异性影响,砂姜黑土中氟含量显著高于其他土壤类型,棕壤中氟含量显著低于其他土壤类型。
参考文献
寿光市高氟地下水的分布规律和成因
[J].
Distribution regularity and genesis of high-fluorine underground water in Shouguang City
[J].
银川平原地下水中氟分布特征及健康风险评价
[J].
Distribution characteristics and health risk assessment of fluorine in groundwater in Yinchuan Plain
[J].
山东省青州市土壤养分元素有效量及其影响因素
[J].
Available contents of soil nutrient elements and their influencing factors in Qingzhou City,Shandong Province
[J].
氟在土壤中的富集与淋滤
[J].
Fluoride enrichment and leaching in the soil:A review
[J].
南水北调中线核心水源区土壤氟空间变异特征与污染风险评价
[J].
DOI:10.18402/resci.2021.02.14
[本文引用: 1]
本文以生态环境脆弱的南水北调中线核心水源区为研究对象,运用GIS与地统计学相结合的方法以及污染风险评估模型,定量揭示了研究区土壤氟元素含量的空间变异特征、分布格局和污染风险等级。结果表明: ①研究区土壤氟元素含量整体偏高,具有较明显的空间自相关性,表层土壤氟密度呈现从西向东、从南向中北部逐渐增加的趋势,并在中东部的南阳市淅川县仓房镇和丹江口市石鼓镇出现明显的单核聚集,与该区域地层岩性及成土母质特征对应;而土壤氟净增量状况则表明大部分地区氟含量都与后期人类活动有关;②氟环境污染程度具有较明显的区域分异性,根据地累计指数特性,表明除丹江口市习家店镇和嵩坪镇受成土母质等结构性因素制约外,其余地区多为人类活动造成的环境污染所致;③潜在生态风险程度表现为低风险区主要分布在研究区的西部和南部,中等风险区主要集中在中东部和北部。少量分布的高等风险区应引起重视,如淅川县盛湾镇东部、仓房镇西部以及丹江口市嵩坪镇和石鼓镇。研究结果旨在为土壤氟环境改善、库区饮用水安全保障等提供数据和技术支撑,同时也给当地土壤修复治理、确保优质清水北调提供决策依据。
Spatial variability and pollution risk assessment of soil fluorine in the core area of the Middle Route of the South-to-North Water Transfer Project
[J].
DOI:10.18402/resci.2021.02.14
[本文引用: 1]
In order to provide important data and technical support for improving local soil fluorine environment and ensuring water safety in reservoir area, it also provides decision-making basis for local soil remediation and ensure high-quality water diversion to the north, this study quantitatively analyzed the spatial distribution and pollution risk of soil fluorine in the core area of the Middle Route of the South- to- North Water Transfer Project with fragile ecological environment by using the methods of GIS and geostatistics and pollution risk assessment models. The results show that: (1) The soil fluorine content was on the high side and showed clear spatial autocorrelation in the study area. The fluorine density of topsoil increased gradually from west to east and south to middle north, and obviously peaked in Cangfang Town, Xichuan County and Shigu Town, Danjiangkou City in the central eastern part, which was corresponding to the characteristics of regional stratigraphic lithology and soil parent material. Combined with information on the net increment of soil fluorine, it was concluded that the fluorine content in most areas was related to human activities. (2) The degree of fluorine pollution showed obvious regional differentiation, which was mostly resulted from environmental pollution caused by human activities according to the characteristics of geoaccumulation index, except that Xijiadian Town and Songping Town of Danjiangkou City were restricted by structural factors such as soil parent material. (3) The degree of potential ecological risk indicates that level A was mainly distributed in the west and the south of the study area, and level B was concentrated in the central, eastern, and northern parts. The areas with the highest ecological risk were the east of Shengwan Town and the west of Cangfang Town in Xichuan County, Songping Town and Shigu Town in Danjiangkou City.
Genesis of geogenic contaminated groundwater:As,F and I
[J].DOI:10.1080/10643389.2020.1807452 URL [本文引用: 1]
山东省桓台地区土壤F的地球化学特征及其影响因素
[J].
Geochemical characteristics and influencing factors of soil fluorine in the Huantai area of Shandong Province
[J].
Hydrogeochemistry and Health Risk Assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District,Telangana State,India
[J].
DOI:10.1007/s12665-020-09327-2
[本文引用: 1]
Land degradation (LD) is a complex process affected by both anthropogenic and natural driving variables, and its prevention has become an essential task globally. The aim of the present study was to develop a new quantitative LD mapping approach using machine learning techniques, benchmark models, and human-induced and socio-environmental variables. We employed four machine learning algorithms [Support Vector Machine (SVM), Multivariate Adaptive Regression Splines (MARS), Generalized Linear Model (GLM), and Dragonfly Algorithm (DA)] for LD risk mapping, based on topographic (n = 7), human-induced (n = 5), and geo-environmental (n = 6) variables, and field measurements of degradation in the Pole-Doab watershed, Iran. We assessed the performance of different algorithms using receiver operating characteristic, Kappa index, and Taylor diagram. The results revealed that the main topographic, geoenvironmental, and human-induced variable was slope, geology, and land use change, respectively. Assessments of model performance indicated that DA had the highest accuracy and efficiency, with the greatest learning and prediction power in LD risk mapping. In LD risk maps produced using SVM, GLM, MARS, and DA, 19.16%, 19.29%, 21.76%, and 22.40%, respectively, of total area in the Pole-Doab watershed had a very high degradation risk. The results of this study demonstrate that in LD risk mapping for a region, topographic, and geological factors (static conditions) and human activities (dynamic conditions, e.g., residential and industrial area expansion) should be considered together, for best protection at watershed scale. These findings can help policymakers prioritize land and water conservation efforts.
中国土壤氟污染研究现状
[J].DOI:10.16258/j.cnki.1674-5906.2017.03.021 [本文引用: 1]
The research status of fluorine contamination in soils of China
[J].
山东高密地区高F区水文地球化学特征
[J].
Hydrogeochemical characteristics of high-fluorine groundwater in the Gaomi area,Shandong,China
[J].
安徽省土壤氟含量及其赋存特征
[J].
Content of fluorine and characteristics of fluorine forms in soils of Anhui Province
[J].
塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因
[J].
DOI:10.13745/j.esf.sf.2022.1.33
[本文引用: 1]
由于地表水资源稀缺,地下水是塔里木盆地南缘绿洲带重要用水水源,因此,系统查明该区地下水砷氟碘的分布及成因至关重要。基于塔里木盆地南缘绿洲带233组地下水水样检测结果,分析不同含水层中高砷、高氟和高碘地下水的空间分布及水化学特征,结合研究区地质、水文地质条件和地下水赋存环境进一步揭示影响地下水砷氟碘的来源、迁移与富集的水文地球化学过程。结果表明:地下水砷、氟、碘浓度变化范围分别为1.091.2 μg/L、0.0128.31 mg/L、10.02 637.0 μg/L。地下水高砷、高氟和高碘水样分别占总水样的7.3%、47.2%和11.6%,砷氟碘共富集占比为3.0%。砷氟碘共富集地下水主要分布于研究区中部的民丰县,水化学类型主要为Cl·SO<sub>4</sub>-Na型。自补给区至过渡区再至蒸发区,地下水氟、碘浓度明显增大,砷浓度在过渡区和蒸发区均较大;砷氟碘共富集地下水取样点主要分布于36.060.0 m深度的浅层承压含水层中。浅层地下水受蒸发作用和矿物溶解沉淀作用的影响,随砷氟碘富集项的增多而增大。第四纪成因类型中风积物对氟浓度的影响较大,洪积-湖积物对砷和碘浓度的影响较大。细粒岩性、平缓的地形、地下水浅埋条件、偏碱性的地下水环境、微生物降解作用下有机质介导的矿物溶解是利于砷氟碘共富集的主要机制。
Distribution and co-enrichment genesis of arsenic,fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin
[J].
珠三角新会地区表层土壤硒、氟、碘地球化学特征研究
[J].
Geochemical characteristics of selenium,fluorine and iodine in surface soils of the Xinhui Area,the Pearl River Delta,China
[J].
巴楚县浅层地下水中氟的分布特征及影响因素分析
[J].
Distribution characteristics and influencing factors of fluorine in shallow groundwater of Bachu County
[J].
山东高密高氟地下水成因模式与原位驱氟设想
[J].山东省高密市地处胶莱盆地,南部为丘陵区,中部为缓坡区,北部为高氟地下水分布的平原区,属于盆地浅层地下水型饮水高氟地区,是全国氟中毒较为严重的地区之一。该区地势平坦,属暖温带大陆季风气候区,蒸发强度较高。晚更新世以来,该区较为平稳,地表水、地下水径流滞缓,地下水以降水补给、蒸发排泄为主,目前兼有少量的人工开采。高氟地下水赋存于白垩纪火山碎屑岩风化残积形成的第四系松散堆积物中,含水层以砂质亚粘土为主,在埋深0.5~1.0 m处普遍发育钙质结核,俗称姜石。靠近北部河流,第四系底部多发育一层厚度渐大的含砾砂层。随着砂层的出现、增厚,地下水中的含氟量逐渐降低。据此总结了高密市高氟地下水的成因模式,为溶滤富集型与蒸发浓缩碱化型的复合模式。通过室内淋溶试验,结合当地的实际,提出“原位驱氟”的设想。
The formation and model of highly-concentrated fluoride groundwater and in-situ fluoride dispelling assumption in Gaomi City of Shandong Province
[J].
高密市高氟地下水成因研究
[J].
High-F groundwater in Gaomi City-Its genetic study
[J].
山东省高密市高氟区地球化学及水文地球化学特征
[J].
Geochemical and hydrogeochemical characteristics of high fluorine area in Gaomi,Shandong
[J].
Soil geochemical background value of 17 cities in Shandong Province
[J].
/
〈 |
|
〉 |
