Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 458-463    DOI: 10.11720/wtyht.2023.1133
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量
胡梦颖1,2(), 张鹏鹏1,2, 徐进力1,2, 刘彬1,2, 张灵火1,2, 杜雪苗1,2(), 白金峰1,2
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.自然资源部 地球化学探测重点实验室,河北 廊坊 065000
Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus
HU Meng-Ying1,2(), ZHANG Peng-Peng1,2, XU Jin-Li1,2, LIU Bin1,2, ZHANG Ling-Huo1,2, DU Xue-Miao1,2(), BAI Jin-Feng1,2
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Langfang 065000, China
全文: PDF(636 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤阳离子交换量是指土壤胶体能够吸附的各种阳离子的总量,是反映土壤缓冲能力和保肥能力的重要指标,也是土壤环境评价等工作中必须分析的指标。传统的乙酸铵交换法(林业标准(LY/T 1243—1999))因其稳定性好、缓冲性强、重复性好而在我国土壤和农化实验室应用较为广泛,但在大批量土壤分析时仍然存在步骤繁琐、耗时长、效率低等不足。为了克服这些不足,本文结合前人的研究,分别从离心、蒸馏、滴定3大步骤对标准方法进行优化,利用CEC前处理系统对样品进行EDTA-乙酸铵溶液置换、乙醇清洗,通过全自动凯氏定氮仪对置换的铵根离子进行测定,从而计算CEC值;详细探讨了测定过程中乙酸铵搅拌时间、乙醇用量、凯氏定氮仪蒸馏时间对测定结果的影响,综合建立并优化了CEC前处理系统—凯氏定氮仪测定土壤中的阳离子交换量的分析方法。实验结果表明,在最佳的置换时间、乙醇用量及蒸馏时间等条件下,一批样品(100件)的测定时间仅需8 h,极大地提高了工作效率,与传统方法相比时间缩短了近85%。方法经国家一级土壤成分分析标准物质验证,测定值与认定值相符,测定值的相对标准偏差(n=6)均小于2%。该方法分析效率高、操作简单,极大地减少了人工操作可能带来的误差,提高了测定结果的准确度,适用于大批量土壤的阳离子交换量的测定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡梦颖
张鹏鹏
徐进力
刘彬
张灵火
杜雪苗
白金峰
关键词 土壤阳离子交换量(CEC)凯氏定氮仪CEC前处理系统    
Abstract

The soil cation exchange capacity (CEC) refers to the total amount of various cations that can be absorbed by soil colloids. It is an important measure of the buffering capacity and fertilizer retention capacity of soil and is also an indicator that must be analyzed in soil environment assessment. The conventional ammonium acetate exchange method described in Chinese forestry standard LY/T 1243—1999 has been widely used in soil and agrochemical laboratories in China due to its high stability, buffering capacity, and repeatability. However, when applied to the batch analysis of soil, this conventional method is time-consuming and has other shortcomings such as cumbersome steps and low efficiency. Based on previous studies, this study optimized the conventional ammonium acetate exchange method in three steps, namely centrifugation, distillation, and titration. Specifically, samples were treated with displacement using mixed EDTA and ammonium acetate solution and cleaning with ethanol using the CEC pretreatment system. Then, the ammonium ions displaced were determined using an automatic Kjeldahl apparatus, followed by the calculation of the CEC. This study discussed the effects of the stirring time of ammonium acetate, ethanol dosage, and distillation time in the Kjeldahl apparatus on CEC determined. On this basis, this study comprehensively established and optimized the method for determining the CEC in soil using the CEC pretreatment system and the Kjeldahl apparatus. As shown by the experimental results, under the optimal conditions of displacement time, ethanol dosage, and distillation time, the optimized method determined the CEC of a batch of samples (100) in only 8 h, which was shortened by nearly 85% compared with the conventional method, thus greatly improving the efficiency. As verified using the certified reference material for the chemical composition of first-grade soil, the determined CEC values agreed with the certified values, with relative standard deviations (n = 6) of all less than 2%. The optimized method is characterized by high efficiency and simple operation and can greatly reduce possible errors caused by manual operation and improve the accuracy of results. Therefore, it is applicable to the bulk determination of soil CEC.

Key wordssoil    cation exchange capacity (CEC)    Kjeldahl apparatus    CEC pretreatment system
收稿日期: 2022-03-22      修回日期: 2022-07-25      出版日期: 2023-04-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目(2021YFC2903001);中国地质科学院地球物理地球化学勘查研究所基本科研业务费项目(AS2020J04);中国地质科学院地球物理地球化学勘查研究所基本科研业务费项目(AS2022J07)
通讯作者: 杜雪苗(1988-),女,硕士,工程师,主要从事地球化学样品配套分析方法的研究工作。Email: dxuemiao@mail.cgs.gov.cn
引用本文:   
胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
HU Meng-Ying, ZHANG Peng-Peng, XU Jin-Li, LIU Bin, ZHANG Ling-Huo, DU Xue-Miao, BAI Jin-Feng. Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus. Geophysical and Geochemical Exploration, 2023, 47(2): 458-463.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1133      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/458
搅拌时间 测定值/(cmol·kg-1) 测定平均值
min 1 2 3 (cmol·kg-1)
3 22.0 21.7 21.8 21.8
5 21.8 22.0 21.9 21.9
10 22.4 22.5 22.4 22.4
15 21.5 22.0 22.5 22.0
20 21.9 21.9 21.9 21.9
25 21.2 21.8 22.3 21.8
Table 1  不同的EDTA-乙酸铵溶液搅拌时间对测定结果的影响
Fig.1  不同乙醇用量对测定结果的影响
Fig.2  凯氏定氮仪蒸馏时间对测定结果的影响
样品 CEC/(cmol·kg-1) RSD/%
6次测定结果 平均值 标准值
GBW07412a 21.8
22.1
22.0
22.0
21.6
21.4
21.8 21.6±1.4 1.31
GBW07415a 20.1
19.2
19.4
19.5
19.2
19.0
19.4 19±1 1.96
GBW07416a 10.2
10.6
10.4
10.3
10.5
10.6
10.4 10.0±0.6 1.49
GBW07417a 20.2
19.5
20.0
19.8
20.2
19.6
19.9 19.7±1.1 1.52
GBW07460 9.9
10.1
10.2
10.3
10.0
10.2
10.1 9.6±1.3 1.41
Table 2  方法精密度和准确度结果
对比 本方法 林业标准(LY/T1243-1999)
前处理步骤 全自动淋洗抽滤系统:加入样品后仪器全自动泵入EDTA-乙酸铵溶液进行搅拌置换和乙醇溶液的淋洗抽滤,普通样品耗时约25min,同时可处理4个样品 手动搅拌离心清洗:全程手动进行多次乙酸铵溶液的搅拌置换和乙醇溶液的清洗,且需要多次离心,单个样品耗时约1h
蒸馏与滴定步骤 全自动蒸馏滴定:加入固体氧化镁后仪器自动边蒸馏边滴定,自动判定终点准确,蒸馏效率100%,单个样品只需4min 手动蒸馏滴定:手工蒸馏装置安装复杂,手工滴定终点易产生偏差,蒸馏效率和体积难以准确控制,单个样品耗时约30min
需配置试剂种类 7 12
测定时长(1个样品) 约0.5h 约1.5h
测定时长(100个样) 约8h 约65h
Table 3  本方法与标准方法对比
[4] 拉毛吉, 王玉功, 张榕. 乙酸铵离心交换法和乙酸钙离心交换法测定土壤阳离子交换量[J]. 中国无机分析化学, 2017, 7(3):38-41.
[4] La M J, Wang Y G, Zhang R. Determination of cation exchange capacity of soil by centrifugal exchange of ammonium and calcium acetates[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3):38-41.
[5] LY/T 1243—1999森林土壤阳离子交换量的测定[S].
[5] LY/T 1243—1999 Determination of cation exchange capacity in forest soil[S].
[6] 张彦雄, 李丹, 张佐玉, 等. 两种土壤阳离子交换量测定方法的比较[J]. 贵州林业科技, 2010, 38(2):45-49.
[6] Zhang Y X, Li D, Zhang Z Y, et al. A comparison study of two methods for mensuration of soil cation exchange capacity[J]. Guizhou Forestry Science and Technology, 2010, 38(2):45-49.
[7] 褚龙, 贺斌. 土壤阳离子交换量的测定方法[J]. 黑龙江环境通报, 2009, 33(1):81-83.
[7] Chu L, He B. Determining method of soil cation exchange capacity[J]. Heilongjiang Environmental Journal, 2009, 33(1):81-83.
[8] 迟伟伟, 徐苏红. 自动淋洗仪快速测定土壤阳离子交换量的研究[J]. 环境科技, 2019, 32(6):60-63.
[8] Chi W W, Xu S H. Study on the method of rapid determination of soil cation exchange capacity with automatic elution apparatus[J]. Environmental Science and Technology, 2019, 32(6):60-63.
[9] 史斌, 朱晓丹, 陆国兴, 等. 全自动淋洗仪在土壤阳离子交换量测定中的应用[J]. 环境与发展, 2017, 2(10):139-142.
[9] Shi B, Zhu X D, Lu G X, et al. The application of automatic leaching instrument to detect the soil cation exchange capacity[J]. Environment and Development, 2017, 2(10):139-142.
[10] 周圆, 卞世闻, 张宇. 凯氏定氮仪测定土壤阳离子交换量的方法改进[J]. 环境科学导刊, 2015, 34(6):106-109.
[10] Zhou Y, Bian S W, Zhang Y. Method improvement of detecting soil CEC by Kieldahl's azotometer[J]. Environmental Science Survey, 2015, 34(6):106-109.
[1] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
[1] Lu R K. Methods for agrochemistry analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 1999.
[11] 李龙飞, 李星, 李永立. 土壤阳离子交换量测定方法的优化与改进[J]. 安徽农业科学, 2019, 47(6):1-2.
[11] Li L F, Li X, Li Y L. Optimization and improvement of cation exchange capacity method in agricultural soils[J]. Journal of Anhui Agricultural Sciences, 2019, 47(6):1-2.
[2] 王文艳, 张丽萍, 刘俏. 黄土高原小流域土壤阳离子交换量分布特征及影响因子[J]. 水土保持学报, 2012, 26(5):123-127.
[2] Wang W Y, Zhang L P, Liu Q. Distribution and affecting factors of soil cation exchange capacity in watershed of the loess plateau[J]. Journal of Soil and Water Conservation, 2012, 26(5):123-127.
[12] 拉毛吉, 王玉功, 张榕, 等. 纳氏试剂分光光度法测定土壤阳离子交换量[J]. 中国无机分析化学, 2018, 8(4):16-20.
[12] La M J, Wang Y G, Zhang R, et al. Determination of cation exchange capacity in soil by using Nessler's spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):16-20.
[13] 王炜, 朱晓丹, 史斌, 等. 全自动淋洗样品预处理—气相分子吸收光谱法测定土壤阳离子交换量[J]. 理化检验:化学分册, 2019, 55(3):314-318.
[13] Wang W, Zhu X D, Shi B, et al. Determination of cation exchange capacity of soil by gas molecular absorption spectrometry with sample treatment by automatic rinsing device[J]. Physical Testing and Chemical Analysis part B:Chemical Analyiss, 2019, 55(3):314-318.
[14] 马怡飞, 张尼, 魏增, 等. 振荡交换—抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量[J]. 岩矿测试, 2019, 38(1):129-135.
[14] Ma Y F, Zhang N, Wei Z, et al. Rapid determination of soil cation exchange capacity by automatic Kjeldahl analyzer after oscillating exchange and suction filtration[J]. Rock and Mineral Analysis, 2019, 38(1):129-135.
[15] 李光一, 任晓荣, 周彧琛, 等. 振荡抽滤—pH计指示电位滴定法快速测定土壤样品中阳离子交换总量[J]. 中国无机分析化学, 2021, 11(2):31-35.
[15] Li G Y, Ren X R, Zhou Y C, et al. Rapid determination of total cation exchange in soil samples by oscillating suction filtration-pH meter potentiometric titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(2):31-35.
[16] DB 33/T 966—2015土壤阳离子交换量的测定[S].
[16] DB 33/T 966—2015 Determination of cation exchange capacity in soil[S].
[17] 肖艳霞, 赵颖, 王彦君, 等. 土壤中阳离子交换量分析方法的优化研究[J]. 中国农学通报, 2019, 35(15):74-78.
doi: 10.11924/j.issn.1000-6850.casb19010106
[17] Xiao Y X, Zhao Y, Wang Y J, et al. Analysis methods for cation exchange capacity in soil:Optimization[J]. Chinese Agricultural Science Bulletin, 2019, 35(15):74-78.
[3] Dawid J, Dorota K. A comparison of methods for the determination of cation exchange capacity of soils[J]. Ecological Chemistry & Engineering S, 2014, 21(3):487-498.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[5] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[6] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[7] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[8] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[9] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[10] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[11] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[12] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
[13] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[14] 包凤琴, 成杭新, 永胜, 杨宇亮, 马志超, 赵丽娟. 土默特左旗农田土壤环境质量综合评价及特色农业开发建议[J]. 物探与化探, 2023, 47(2): 487-495.
[15] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com