Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1127-1136    DOI: 10.11720/wtyht.2023.1151
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
典型地热田环境微生物分布特征及其勘探意义
郑旭莹1(), 许科伟1(), 顾磊1, 王国建1, 李广之1, 郭嘉琪1, 邹雨1, 腾格尔2
1.中国石油化工股份有限公司石油勘探开发研究院 无锡石油地质研究所,江苏 无锡 214126
2.中国地质调查局 油气资源调查中心,北京 100083
Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration
ZHENG Xu-Ying1(), XU Ke-Wei1(), GU Lei1, WANG Guo-Jian1, LI Guang-Zhi1, GUO Jia-Qi1, ZOU Yu1, BORJIGIN Tenger2
1. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China
2. Oil & Gas Resources Survey, China Geological Survey, Beijing 100083, China
全文: PDF(4903 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地热作为一种清洁能源,在近年来逐渐受到世界各国学者的广泛关注。在以往的地球化学勘探方法中,对地热资源的勘查仅限于个别地球化学指标的分析,并且对地热田微生物的研究多针对温泉露头处,尚缺乏对于复杂地形中地热资源的生态学研究。本研究通过对安徽巢湖半汤温泉地热田内的土壤地球化学以及微生物多样性进行研究,采用顶空气、土壤气、酸解烃、蚀变碳酸盐等地球化学指标的检测技术,结合微生物高通量测序技术,对隆起山地型地热田上方的微生物种群构成、时空分布特征以及这些生物信息学特征与地球化学指标的对应关系进行研究探讨。结果显示:地热田地表酸解烃甲烷最高值为43.7μL/kg,位于F2、F3断层之间,较好地反映了地热田断裂的位置;芽胞杆菌科(Bacillaceae)、嗜氢菌科(Hydrogenophilaceae)和热脱硫弧菌科(Thermodesulfovibrionaceae)在地热田区与在背景区的相对丰度差值较大,分别为0.178%、0.108%和0.060%,说明它们是地热资源的敏感细菌,并且在已知地热田上方与地球化学指标有良好的对应关系。本研究初步考察了地热田内地热微生物的多样性,探讨了微生物分布特征与地球化学指标之间的对应关系,为地热资源微生物勘探提供了技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑旭莹
许科伟
顾磊
王国建
李广之
郭嘉琪
邹雨
腾格尔
关键词 地热微生物高通量测序地球化学多样性分析    
Abstract

As a kind of clean energy, geothermal energy has attracted the attention of scholars all over the world in recent years. Previous geochemical exploration methods for geothermal resources are limited to the analysis of individual geochemical indices. Moreover, previous studies of microorganisms in geothermal fields mostly focus on hot spring outcrops, lacking ecological studies of geothermal resources in complex terrains. This study investigated the soil geochemistry and microbial diversity of the Bantang Hot Spring geothermal field in Chaohu, Anhui Province. Geochemical indices such as head-space gas, soil gas, acid-hydrolyzed hydrocarbons, and altered carbonate were detected in this study. Combined with the microbial high-throughput sequencing technology, this study analyzed the composition and spatial-temporal distribution of the microbial population above the geothermal fields in uplifted mountains and the relationship between these bioinformatics characteristics and the geochemical indices. The results indicate that the acid-hydrolyzed hydrocarbons on the surface of the geothermal field showed a maximum methane concentration of 43.7 μL/kg in the area between faults F2 and F3, adequately reflecting the fault location of the geothermal field.Bacillaceae, Hydrogenophilaceae, and Thermodesulfovibrionaceae in the geothermal field and the background area showed large relative abundance differences, which were 0.178%, 0.108%, and 0.060%, respectively. This result indicates that they are sensitive to geothermal resources and correspond well to geochemical indices above the known geothermal field. This study preliminarily investigated the diversity of geothermal microorganisms in the geothermal field and analyzed the corresponding relationships between microbial distribution characteristics and geochemical indexes, providing technical support for the microbiological exploration of geothermal resources.

Key wordsgeothermal microorganism    high-throughput sequencing    geochemistry    diversity analysis
收稿日期: 2022-03-30      修回日期: 2023-01-30      出版日期: 2023-10-20
ZTFLH:  Q939.99  
  P618.130.8  
基金资助:国家科技部国家重点研发计划课题“华南火成岩地区深层地热资源探测技术”(2019YFC0604902);国家自然科学基金“页岩气改造—散失途径与保存条件”(41690133)
通讯作者: 许科伟
作者简介: 郑旭莹(1993-),女,硕士研究生,2019年毕业于中国地质大学(武汉),主要从事油气微生物勘探开发应用研究工作。Email: zhengxuying.syky@sinopec.com
引用本文:   
郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger. Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration. Geophysical and Geochemical Exploration, 2023, 47(5): 1127-1136.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1151      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1127
Fig.1  半汤地热田地质及化探剖面示意
Fig.2  半汤温泉A-A’剖面上方地球化学指标异常特征
Fig.3  地热田及周边样品微生物群落分布(门水平)
Fig.4  地热田及周边样品微生物群落分布(纲水平)
Fig.5  不同来源样品微生物群落Beta多样性分析
排名 菌种名称 地热田上方
丰度均值/%
背景区丰
度均值/%
差值/%
1 芽孢杆菌科(Bacillaceae) 0.210353789 0.032049 0.178305
2 嗜氢菌科(Hydrogenophilaceae) 0.110271807 0.002218 0.108054
3 热脱硫弧菌科(Thermodesulfovibrionaceae) 0.060291076 0.002938 0.057353
4 消化链球菌科(Peptostreptococcaceae) 0.041819903 0.000529 0.041291
5 梭菌科(Clostridiaceae) 0.042082563 0.002736 0.039347
6 动球菌科(Planococcaceae) 0.02255116 0.001332 0.021219
7 地杆菌科(Geobacteraceae) 0.01878669 0.005147 0.01364
8 类芽孢杆菌科(Paenibacillaceae) 0.027219813 0.017902 0.009318
9 黄单胞菌科(Xanthomonadaceae) 0.015909608 0.007594 0.008316
10 脱硫叶菌科(Desulfobulbaceae) 0.005723484 0.001101 0.004622
Table 1  半汤地热田微生物相对丰度排列
Fig.6  半汤地热田剖面地热指示微生物相对丰度分布
[1] 吴继新. 地热勘查中各种技术方法的综合应用[J]. 地下水, 2013, 35(3):105-109.
[1] Wu J X. Comprehensive application of various techniques and methods in geothermal exploration[J]. Ground Water, 2013, 35(3):105-109.
[2] 许军强, 白朝军. 我国地热资源勘探技术及其应用[C]// 河南地球科学通报2009年卷(下册), 2009:216-220.
[2] Xu J Q, Bai C J. Technique and application of geothermal resources exploration in China[C]// Henan Earth Science Bulletin 2009 volume(Part I) 2009:216-220.
[3] Sasaki K, Ueda A, Zhang J, et al. Geochemical study of hot springs associated with new geothermal exploration in the eastern part of Toyama Prefecture,Japan[J]. Procedia Earth and Planetary Science, 2013, 7:766-769.
doi: 10.1016/j.proeps.2013.03.109
[4] Barberi F, Carapezza M L, Cioni R, et al. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)[J]. Journal of Volcanology and Geothermal Research, 2013, 257:113-134.
doi: 10.1016/j.jvolgeores.2013.03.011
[5] McDonald I R, Murrell J C. The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs[J]. FEMS Microbiology Letters, 1997, 156(2):205-210.
pmid: 9513266
[6] Rasheed M A, Hasan S Z, Rao P, et al. Application of geo-microbial prospecting method for finding oil and gas reservoirs[J]. Research Article, 2015, 9(1):40-50.
[7] 张春林, 庞雄奇, 梅海. 烃类微渗漏与宏渗漏的识别及镇巴长岭—龙王沟地区勘探实践[J]. 天然气地球科学, 2009, 20(5):794-800.
[7] Zhang C L, Pang X Q, Mei H. Identification of microseepage from macroseepage and exploration practice in Changling-Longwanggou area of Zhenba block[J]. Natural Gas Geoscience, 2009, 20(5):794-800.
[8] Zhang Y, Deng C P, Shen B, et al. Syntrophic interactions within a butane-oxidizing bacterial consortium isolated from Puguang gas field in China[J]. Microb.Ecol. 2016, 72:538-548.
[9] 王万春, 刘文汇, 王国仓, 等. 沉积有机质微生物降解与生物气源岩识别——以柴达木盆地三湖坳陷第四系为例[J]. 石油学报, 2016, 37(3):318-327.
doi: 10.7623/syxb201603004
[9] Wang W C, Liu W H, Wang G C, et al. Biodegradation of depositional organic matter and identification of bio-genic gas source rocks:An example from the Sanhu depression of Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(3) :318-327.
[10] 丁力, 杨迪生, 吴宇兵. 微生物地球化学勘探技术在准噶尔盆地的应用[J]. 天然气工业, 2021, 41(10):50-57.
[10] Ding L, Yang D S, Wu Y B. Application of microbial geochemical exploration technologies in the Junggar Basin[J]. Natural Gas Industry, 2021, 41(10):50-57.
[11] Li X X, Mbadinga S M, Liu J F. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs[J]. International Biodeterioration & Biodegradation, 2017, 120:170-185.
[12] 闫亮, 贾宝迁, 季苗, 等. 塔里木盆地新和地区低幅度构造油气微生物特征及有利目标区预测[J]. 石油实验地质, 2020, 42(6):1001-1008.
[12] Yan L, Jia B Q, Ji M, et al. Microbial characteristics of low-amplitude structures and prediction of favorable target areas in Xinhe area,Tarim Basin,[J]. Petroleum Geology & Experiment, 2020, 42(6):1001-1008.
[13] Lundberg D, Derek S, Mieczkowski P. Practical innovations for high-throughput amplicon sequencing[J]. Nature Methods, 2013, 10:999-1002.
doi: 10.1038/nmeth.2634 pmid: 23995388
[14] Mohammed R, Lakshmi M, Kalpana M. The microbial activity in development of hydrocarbon microseepage:An indicator for oil and gas exploration[J]. Geosciences Journal, 2013, 17(3):329-338.
doi: 10.1007/s12303-013-0026-y
[15] 何晴, 王尚, 邓晔. 分子生物学技术在热泉地质微生物学研究中的应用[J]. 微生物学报, 2019, 59(6):996-1011.
[15] He Q, Wang S, Deng Y. Molecular biological technologies applied in geo-microbiology of terrestrial geothermal environments[J]. Acta Microbiologica Sinica, 2019, 59(6):996-1011.
[16] Shekhar S K, Godheja J, Modi D R. Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites[G]//Bioremediation of Industrial Waste for Environmental Safety, Singapore:Springer, 2020, 18:437-474.
[17] Ekaterina A, Trine F, Knut R. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data[J]. Microbes Environ, 2013, 28(2):211-216.
doi: 10.1264/jsme2.me12157 pmid: 23603801
[18] Linhares D D C, Saia F T, Duarte R T D, et al. Methanotrophic community detected by DNA-SIP at Bertioga's mangrove area,Southeast Brazil[J]. Microbial Ecology, 2021, 81:954-964.
doi: 10.1007/s00248-020-01659-7 pmid: 33392629
[19] Ning Z, He Z, Zhang S, et al. Development of a prmA genes quantification technique and assessment of the technique's application potential for oil and gas reservoir exploration[J]. Energy Exploration & Exploitation, 2018, 36(5):1172-1188.
[20] 李清彩, 赵庆令, 安茂国, 等. 电感耦合等离子体发射光谱法测定地热水中的硫化物[J]. 岩矿测试, 2017, 36(3):239-245.
[20] Li Q C, Zhao Q L, An M G, et al. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(3) :239-245.
[21] 张生, 陈根文, Seward T M. 离子选择电极法测定水热气体中的硼含量及硼的气态迁移能力研究[J]. 岩矿测试, 2016, 35(4):358-365.
[21] Zhang S, Chen G W, Seward T M. Determination of boron content in hydrothermal vapor by ion selective electrode method:Insights into the gaseous transport of boron[J]. Rock and Mineral Analysis, 2016, 35(4) :358-365.
[22] 王祝, 李明礼, 邵蓓, 等. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 2015, 34(3):302-307.
[22] Wang Z, Li M L, Shao B, et al. Determination of 11 major and minor elements in geothermal water of the riduo hotsprings from tibet by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(3):302-307.
[23] 姜贞贞, 刘高令, 王祝, 等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5):475-480.
[23] Jiang Z Z, Liu G L, Wang Z, et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5) :475-480.
[24] 黄家福, 潘裕添, 陈俊玉. 地热田碱性蛋白酶菌株的选育与酶性质的研究[J]. 漳州师范学院学报:自然科学版. 2011, 71:48-55.
[24] Huang J F, Pan Y T, Chen J Y. Breeding of alkaline protease producing strain from geothermal field and properties of the enzyme[J]. Journal of Zhangzhou Teachers College:Natural Sciences, 2011, 71:48-55.
[25] Sagasti A J, Massini J L G, Escapa I H, et al. Multitrophic interactions in a geothermal setting:Arthropod borings,actinomycetes,fungi and fungal-like microorganisms in a decomposing conifer wood from the Jurassic of Patagonia[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2019, 5(14):31-44.
[26] 孙雄, 柏林, 查世新, 等. 中国温泉之乡巢湖市的地热资源及其开发利用[J]. 上海地质, 2010, 31(S1):258-261.
[26] Sun X, Bai L, Zha S X, et al. Geothermal resource and its development and utilization in Chaohu City,Hot Spring Land in China[J]. Shanghai Geology, 2010, 31(S1):258-261.
[27] 于鹏, 宋传中. 巢湖地区构造应力场研究及动力分析[J]. 合肥学院学报:自然科学版, 2010, 20(2):78-81.
[27] Yu P, Song C Z. Study on the tectonic stress field and dynamic analysis of Chaohu area[J]. Journal of Hefei University:Natural Sciences, 2010, 20(2):78-81.
[28] 张恩立, 张寅生, 郑树杰, 等. 郯庐断裂带皖东段与滁河断裂构造及地震活动相关性研究[J]. 防灾减灾工程学报, 2004, 24(2):202-209.
[28] Zhang E L, Zhang Y S, Zheng S J, et al. Correlation of tectonics and seismicity in Tancheng-Lujiang fault zone in east Anhui and Chuhe fault[J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(2):202-209.
[29] 宁金野. 合肥温泉之乡半汤地热成因模式及其外围地热前景探讨[J]. 安徽地质, 2013, 23(3):227-230.
[29] Ning J Y. Genetic model of the geothermal energy in Bantang,a spa town in Hefei and the exploration potential in the periphery[J]. Geology of Anhui, 2013, 23(3):227-230.
[30] 陈学锋, 丁海亮, 李莉莉, 等. 安徽昭关温泉形成条件及地热水化学特征分析[J]. 地下水, 2017, 39(5):51-53.
[30] Chen X F, Ding H L, Li L L, et al. Formation conditions and chemical characteristics of geothermal water in Zhaoguan,Anhui Province[J]. Ground Water, 2017, 39(5):51-53.
[31] 顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究玉北油田上方微生物多样性[J]. 应用与环境生物学报, 2017, 23(2):276-282.
[31] Gu L, Xu K W, Tang Y P, et al. Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(2) :276-282.
[32] 顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020, 42(3):443-458.
[32] Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020, 42(3):443-458.
[33] 陈卫明, 肖细炼, 李庆霞, 等. 气相色谱法测定油气化探样品中酸解烃的研究[J]. 岩矿测试, 2015, 34(6):698-703.
[33] Chen W M, Xiao X L, Li Q X, et al. Determination of acidolysis hydrocarbons in oil/gas geochemical exploration samples by gas chromatography[J]. Rock and Mineral Analysis, 2015, 34(6):698-703.
[34] 吴向华. 顶空气分析技术在井中化探中的应用研究[J]. 安徽地质, 2002, 12(2):140-144.
[34] Wu X H. Top gas analysis technique applied to well geochemical exploration[J]. Geology of Anhui, 2002, 12(2):140-144.
[35] 向龙斌, 杨占山, 吴朋远, 等. 地表土壤碳酸盐热解与碳同位素实验研究[J]. 石油实验地质, 1993(3):304-308.
[35] Xiang L B, Yang Z S, Wu P Y, et al. Pyrolysis and c-isotopic study on carbonates of surface soil[J]. Petroleum Geology & Experiment, 1993 (3):304-308.
[36] 把立强, 李广友. 模拟气碳同位素在线分析技术[J]. 石油实验地质. 2003, 25 (S1):607-609.
[36] Ba L Q, Li G Y. On-line analytical technology of carbon isotopes for simulated gases[J]. Petroleum Geology & Experiment, 2003, 25(S1):607-609.
[37] 成智慧, 郭正府, 张茂亮, 等. 腾冲新生代火山区温泉CO2气体排放通量研究[J]. 岩石学报. 2012, 28(4):1217-1224.
[37] Cheng Z H, Guo Z F, Zhang M L, et al. CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field,Yunnan Province,SW China[J]. Acta Petrologica Sinica, 2012, 28(4):1217-1224.
[38] 董海良, 于炳松, 吕国. 地质微生物学中几项最新研究进展[J]. 地质评论, 2009, 55(4):552-580.
[38] Dong H L, Yu B S, Lyu G. Recent developments in geomicrobiology[J]. Geological Review, 2009, 55(4):552-580.
[39] Guo L, Wang G C, Sheng Y Z, et al. Temperature governs the distribution of hot spring microbial community in three hydrothermal fields,Eastern Tibetan Plateau Geothermal Belt,Western China[J]. Science of The Total Environment, 2020, 720:137574.
doi: 10.1016/j.scitotenv.2020.137574
[1] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[2] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[5] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[6] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[7] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[8] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[9] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[10] 陈熙, 安朝, 张文权, 徐云甫, 马瑛, 史连昌, 陶志华. 柴北缘中段地球化学特征及铬的成矿潜力评价[J]. 物探与化探, 2023, 47(2): 353-364.
[11] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[12] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[13] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[14] 肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
[15] 吴发富, 刘江涛, 王建雄, 胡鹏, 程湘, 李福林, 赵凯, 曾国平, 王成刚, 向鹏. 摩洛哥地球化学景观划分[J]. 物探与化探, 2023, 47(1): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com