Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 179-189    DOI: 10.11720/wtyht.2023.2667
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
面向地球化学异常识别的深度学习算法对比研究
李沐思1,2,3(), 陈丽蓉2,3(), 谢飞2, 谷兰丁2, 吴晓栋2, 马芬2, 尹兆峰2
1.中国地质科学院, 北京 100037
2.中国地质调查局 发展研究中心, 北京 100037
3.中国地质大学(北京) 地球科学与资源学院, 北京 100083
Comparison of deep learning algorithms for geochemical anomaly identification
LI Mu-Si1,2,3(), CHEN Li-Rong2,3(), XIE Fei2, GU Lan-Ding2, WU Xiao-Dong2, MA Fen2, YIN Zhao-Feng2
1. Chinese Academy of Geological Sciences, Beijing 100037,China
2. Development and Research Center, China Geological Survey, Beijing 100037,China
3. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083,China
全文: PDF(6584 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对选用不同网络结构的深度学习算法进行地球化学异常识别,重构符合成矿分布的地球化学背景时选择依据较少的问题,本文基于闽西南铜锌银成矿区1∶20万水系沉积物数据,采用3种无监督深度学习模型AE、MCAE、FCAE,分别提取了样本中多元素的组合结构特征、空间分布特征以及混合特征,并基于其重构地球化学背景,模拟成矿分布。结果显示,FCAE模型圈定的异常区域与已知铜矿点最贴合,其次是MCAE模型和AE模型,其AUC值分别为0.80、0.78、0.61,且FCAE模型和AE模型对卷积窗口尺寸变化不敏感;说明面向地球化学异常识别构建深度学习算法时,基于提取空间分布特征或混合特征的算法综合表现较好,且基于提取组合结构特征或混合特征的算法对由观测空间尺度变化或不一致引起的噪声有较强抗干扰能力。本文为因地制宜地构建基于深度学习算法的地球化学异常识别模型提供了有效依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李沐思
陈丽蓉
谢飞
谷兰丁
吴晓栋
马芬
尹兆峰
关键词 地球化学异常识别卷积自编码器特征融合无监督学习特征提取深度学习    
Abstract

There is a lack of selection bases in the geochemical anomaly identification and the reconstruction of the geochemical background conforming to the metallogenic distribution using deep learning algorithms with different network structures. Given this, based on the 1∶200 000 stream sediment data of the copper-zinc-silver metallogenic area in southwestern Fujian Province, this study extracted the combined structural characteristics, spatial distribution characteristics, and mixed characteristics of multiple elements in the samples using three unsupervised deep learning models, i.e., AE, MCAE, and FCAE. Then, these characteristics were used to reconstruct the geochemical background and simulate the metallogenic distribution. The results show that the anomaly areas delineated by the FCAE model were the most consistent with the known copper ore occurrences, followed by the MCAE and AE models. The FCAE, MCAE, and AE models had an area under the curve (AUC) score of 0.80, 0.78, and 0.61, respectively. Moreover, the FCAE and AE models were not sensitive to the change in the convolution window size. These results indicate that when deep learning algorithms are constructed for geochemical anomaly identification, the algorithms based on the extraction of spatial distribution characteristics or mixed characteristics perform well, and those based on the extraction of combined structural characteristics or mixed characteristics have a strong anti-interference ability for the noise caused by the change or inconsistency of the spatial observation scale. This study provides some effective selection bases for constructing geochemical anomaly identification models based on deep learning algorithms.

Key wordsgeochemical anomaly identification    convolutional autoencoder    feature combination    unsupervised learning    feature extraction    deep learning
收稿日期: 2021-12-10      修回日期: 2022-04-24      出版日期: 2023-02-20
ZTFLH:  TP39  
  P595  
基金资助:中国地质调查局地质调查项目“地质云系统集成与共享服务”(DD20190392)
通讯作者: 陈丽蓉(1984-),女,博士,助理研究员,主要从事空间信息技术应用与服务、时空大数据分析及人工智能算法在地学领域应用研究工作。Email:chenlirong@mail.cgs.gov.cn
作者简介: 李沐思(1998-),女,硕士研究生,主要从事地质大数据挖掘与分析研究工作。Email:342159595@qq.com
引用本文:   
李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng. Comparison of deep learning algorithms for geochemical anomaly identification. Geophysical and Geochemical Exploration, 2023, 47(1): 179-189.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2667      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/179
Fig.1  研究区域地质简图(修改自Guan Q F等[10])
Fig.2  自编码器模型AE
Fig.3  多重卷积自编码器模型MCAE[9]
Fig.4  混合卷积自编码器模型FCAE[10]
真实/预测 异常样本 背景样本
已知矿点 true positive(TP) false negative(FN)
非已知矿点 false positive(FP) true negative(TN)
Table 1  模型预测结果混淆矩阵
Fig.5  地球化学异常识别流程
指标 Ag Au Zn As Cd Sb Ti Pb P Na2O
相关系数 0.742 0.531 0.525 0.434 0.379 0.353 0.244 0.242 0.142 0.156
Table 2  Cu与其他指标的Pearson相关系数[10]
模型 编码器 解码器
AE 输入:以样本为单位输入,输入为11×5244(57×92)的样本浓度值矩阵
全连接层:250个神经元,激活函数relu
全连接层:180个神经元,激活函数relu
全连接层:80个神经元,激活函数relu
全连接层:80个神经元,激活函数relu
全连接层:180个神经元,激活函数relu
全连接层:250个神经元,激活函数relu
输出:输出维度为11×5244(57×92)的重构矩阵,激活函数为softmax
训练次数为10000次
MCAE 输入层:以元素为单位输入,维度为(57×92)5244×11的样本浓度值矩阵
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu,填充方式same
池化层:二维池化,池化窗口3×2,填充方式same
上采样层:二维上采样,池化窗口3×2
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu,填充方式same
输出层:卷积窗口为1的卷积层,输出维度为11×5244(57×92)的重构矩阵,激活函数sigmoid
训练次数为1500次
Table 3  AE和MCAE网络结构
模型 编码器 解码器
AE-S编码器 AE-C编码器 AE-C解码器 AE-S解码器
FCAE 输入:以元素为单位输入,维度为(57×92)5244×11的样本浓度值矩阵
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu,填充方式same
池化层:二维池化,池化窗口3×2,填充方式same
输入:以元素为单位输入,维度为(57×92)5244×11的样本浓度值矩阵
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu,填充方式same
池化层:二维池化,池化窗口3×2,填充方式same
输入:AE-C编码器输出的拼接层
上采样层:二维上采样,池化窗口3×2
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu
输出:卷积窗口为1的卷积层,输出维度为11×5244(57×92)的重构矩阵,激活函数是sigmoid,填充方式same
输入:AE-S解码器输出的拼接层
上采样层:二维上采样,池化窗口3×2
卷积层:二维卷积,卷积核数为16,多尺寸卷积窗口,激活函数relu
AE-S的训练次数为1200次,AE-C的训练次数为1000次
Table 4  FCAE网络结构
模型 PAbnormal Recall AUC
AE 0.126 0.455 0.611
MCAE 0.499 0.909 0.780
FCAE 0.399 0.909 0.802
Table 5  三种模型性能对比
Fig.6  三种特征提取模型的ROC曲线和AUC分布
Fig.7  不同尺寸卷积窗口的MCAE和FCAE性能对比
Fig.8  -1 基于ROC曲线最佳阈值的地球化学异常分布
Fig.8  -2 基于ROC曲线最佳阈值的地球化学异常分布
提取特征 模型 覆盖矿点数/
总矿点数
优点 缺点 适用范围
元素组合结构特征 AE 7/11 能有效圈定靶区且对空间噪声不敏感 圈定靶区的准确率相对较低 矿产分布稀疏的地区
元素空间分布特征 MCAE 8/11 能相对精确地圈定靶区 需限制输入数据为规则网格数据,且对空间噪声较敏感 矿产分布稀疏且具有规则网格数据采样条件的地区
元素组合结构与空间分布混合特征 FCAE 9/11 能精确地圈定靶区,同时有效预测沿断层分布的铜矿点,且对空间噪声不敏感 需限制输入数据为规则网格数据 矿产分布稀疏且具有规则网格数据采样条件的地区
Table 6  三种模型对比总结
[1] 郭科. 复杂地质地貌区多尺度地球化学异常识别的非线性研究[D]. 成都: 成都理工大学, 2005:12.
[1] Guo K. The study of non-linear of complex geology land form identification of the multi-dimensioned geochemistry anomaly[D]. Chengdu: Chengdu University of Technology, 2005:12.
[2] Tobler W. On the first law of geography: A reply[J]. Annals of the Association of American Geographers, 2004, 94(2): 304-310.
doi: 10.1111/j.1467-8306.2004.09402009.x
[3] Zuo R G, Xiong Y H, Wang J, et al. Deep learning and its application in geochemical mapping[J]. Earth-Science Reviews, 2019, 192: 1-14.
doi: 10.1016/j.earscirev.2019.02.023
[4] Zuo R G. Machine learning of mineralization-related geochemical anomalies: A review of potential methods[J]. Natural Resources Research, 2017, 26(4): 457-464.
doi: 10.1007/s11053-017-9345-4
[5] 刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用——以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224.
[5] Liu Y P, Zhu L X, Zhou Y Z. Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case[J]. Acta Petrologica Sinica, 2018, 34(11): 3217-3224.
[6] 蔡惠慧, 朱伟, 李孜轩, 等. 基于深度学习的钨钼找矿靶区预测方法研究[J]. 地球信息科学学报, 2019, 21(6):928-936.
doi: 10.12082/dqxxkx.2019.190032
[6] Cai H H, Zhu W, Li Z X, et al. Prediction method of tungsten-molybdenum prospecting target area based on deep learning[J]. Journal of Geo-information Science, 2019, 21(6):928-936.
[7] 陈丽蓉. 顾及空间约束的多元地球化学异常识别自编码神经网络方法研究[D]. 武汉: 中国地质大学(武汉), 2019:79.
[7] Chen L R. Multivariate geochemical anomaly recognition using spatial constrained autoencoders[D]. Wuhan: China University of Geosciences(Wuhan), 2019:79.
[8] Chen L R, Guan Q F, Xiong Y H, et al. A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition[J]. Computers & geosciences, 2019, 125:43-54.
doi: 10.1016/j.cageo.2019.01.016
[9] Chen L R, Guan Q F, Feng B, et al. A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition[J]. Minerals, 2019, 9(5):270.
doi: 10.3390/min9050270
[10] Guan Q F, Ren S L, Chen L R, et al. A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition[J]. Computers and Geosciences, 2021(1):104890.
[11] 高原. 闽西南铜多金属矿找矿信息挖掘与成矿预测[D]. 武汉: 中国地质大学(武汉), 2019:30.
[11] Gao Y. Mineral prospecting information mining and mapping mineral prospectivity for copper polymetallic mineralization in southwest Fujian Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019:30.
[12] 张翠光, 陈润生, 黄昌旗, 等. 武夷山成矿带成矿地质背景及成矿规律研究[M]. 北京: 地质出版社, 2014: 60.
[12] Zhang C G, Chen R S, Huang C Q, et al. Study on the geological background of mineralization and mineralization pattern of Wuyishan mineralization zone[M]. Beijing: Geological Publishing House, 2014: 60.
[13] 刘崇民, 胡树起, 马生明, 等. 成矿元素相态对地球化学异常识别的作用[J]. 物探与化探, 2013, 37(6):1049-1055.
[13] Liu C M, Hu S Q, Ma S M, et al. The role of the phase state of metallogenic elements in the recognition of geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1049-1055.
[14] 郑泽宇, 赵庆英, 李湜先, 等. 地球化学异常识别的两种机器学习算法之比较[J]. 世界地质, 2018, 37(4): 1288-1294.
[14] Zheng Z Y, Zhao Q Y, Li S X, et al. Comparison of two machine learning algorithms for geochemical anomaly detection[J]. Global Geology, 2018, 37(4): 1288-1294.
[15] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors[J]. Nature, 1986, 323(6088): 533-536.
doi: 10.1038/323533a0
[16] 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36(3): 697-702.
doi: 10.11772/j.issn.1001-9081.2016.03.697
[16] Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36(3): 697-702.
doi: 10.11772/j.issn.1001-9081.2016.03.697
[17] 费艳, 缪骞云, 刘学军. 一种基于卷积自动编码器的推荐系统攻击检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1088-1092.
[17] Fei Y, Miao Q Y, Liu X J. Recommendation system attack detection method based on convolutional autoencoder[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1088-1092.
[18] 宋晓霞. 基于栈式自动编码器的高分辨率遥感影像分类[J]. 测绘与空间地理信息, 2021, 44(5):128-131.
[18] Song X X. High resolution remote sensing image classification based on stacked autoencoder[J]. Geomatics & Spatial Information Technology, 2021, 44(5):128-131.
[19] 张扬. 基于卷积自编码器的异常事件检测研究[D]. 杭州: 浙江大学, 2018:10.
[19] Zhang Y. Anomaly detection based on convolutional autoencoder[D]. Hangzhou: Zhejiang University, 2018:10.
[20] Chen K, Seuret M, Liwicki M, et al. Page segmentation of historical document images with convolutional autoencoders[C]// 2015 13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2015: 1011-1015.
[21] 宋辉, 高洋, 陈伟, 等. 基于卷积降噪自编码器的地震数据去噪[J]. 石油地球物理勘探, 2020, 55(6): 1210-1219.
[21] Song H, Gao Y, Chen W, et al. Seismic noise suppression based on convolutional denoising autoencoders[J]. Oil Geophysical Prospecting, 2020, 55(6): 1210-1219.
[22] 江金生, 任浩然, 李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报:工学版, 2020, 54(5): 978-984.
[22] Jiang J S, Ren H R, Li H Y. Seismic data processing based on convolutional autoencoder[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(5): 978-984.
[23] An J, Cho S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
[24] Xiong Y H, Zuo R G. Recognition of geochemical anomalies using a deep autoencoder network[J]. Computers and Geosciences, 2016, 86: 75-82.
doi: 10.1016/j.cageo.2015.10.006
[25] Valentine A P, Trampert J. Data space reduction, quality assessment and searching of seismograms: Autoencoder networks for waveform data[J]. Geophysical Journal International, 2012, 189(2): 1183-1202.
doi: 10.1111/j.1365-246X.2012.05429.x
[26] Fawcett T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8): 861-874.
doi: 10.1016/j.patrec.2005.10.010
[27] Benesty J, Chen J, Huang Y, et al. Pearson correlation coefficient [G]// Noise reduction in speech processing. Berlin, Heidelberg: Springer, 2009: 1-4.
[28] Chen Y L, Lu L J, Li X B. Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly[J]. Journal of Geochemical Exploration, 2014, 140: 56-63.
doi: 10.1016/j.gexplo.2014.02.013
[29] Zhou J, Cui G Q, Hu S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1∶ 57-81.
[30] 陈志军, 成秋明, 陈建国. 利用样本排序方法比较化探异常识别模型的效果[J]. 地球科学:中国地质大学学报, 2009, 34(2):353-364.
[30] Chen Z J, Cheng Q M, Chen J G. Comparison of different models for anomaly recognition of geochemical data by using sample ranking method[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(2):353-364.
doi: 10.3799/dqkx.2009.038
[1] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[2] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[3] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[4] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[5] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[6] 胡瑞卿, 王彦春, 岳占伟, 王奇. 小波域特征提取在浅层地震资料面波压制中的应用[J]. 物探与化探, 2018, 42(6): 1228-1236.
[7] 荆智辉, 张世晖, 李强. 基于Beamlet变换的断层识别与线性提取[J]. 物探与化探, 2013, 37(3): 543-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com