Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 648-658    DOI: 10.11720/wtyht.2023.2700
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例
保善东(), 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪
青海省地质调查院 青藏高原北部地质过程与矿产资源重点实验室,青海 西宁 810012
Grain-scale experimental study of samples using the large-scale micro-channel system survey technique for the cold, semi-arid grassland landscape: A case study of the rare Li-Be ores in the Qiemoge Mountain
BAO Shan-Dong(), XIE Xiang-Lei, WANG Ya-Dong, XU Yun-Fu, ZHANG Xin-Yuan, ZENG Biao
Key Laboratory of the Northern Qinghai-Tibet Plateau Geological Processes and Mineral Resources, Qinghai Geological Survey Institute, Xining 810012, China
全文: PDF(16613 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

青海省天峻县锲墨格山地区属寒冷半干旱草原景观,地表发育宽300~500 m、断续延伸达7 km的伟晶岩带。目前勘查工作已发现了锲墨格山锂铍稀有矿,为了能够在后续同类景观区稀有稀土找矿中提供可靠的地球化学依据,本文在锲墨格山地区开展了大比例尺微沟系地球化学测量技术方法的样品粒级试验和有效性研究。本次通过1∶2.5万地球化学测量,选取-4~+20目、-4~+40目、-10~+40目和-10~+60目采样截取粒级,在伟晶岩脉发育地段进行试验研究,分析Cu、W、Sn、Be、Li、Nb、Rb、Zr、La、Y元素含量。结果显示,Be、Li、Nb、Rb、Zr稀有元素选取-4~+40目和-10~+40目采样截取粒级,La、Y等稀土元素选择-10~+40目采样截取粒级,Cu、W、Sn等有色金属元素选择-10~+60目采样截取粒级时,元素富集离散特征更明显,地球化学分布与地质矿产特征吻合度更高,证明该技术方法可以在同类景观区稀有稀土找矿工作中获得显著的地球化学找矿效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
保善东
谢祥镭
王亚栋
徐云甫
张新远
曾彪
关键词 1∶2.5万地球化学微沟系锂铍稀有矿粒级寒冷半干旱草原景观锲墨格山    
Abstract

The Qiemoge Mountain area in Tianjun County, Qinghai Province has a cold, semi-arid grassland landscape. A pegmatite belt with a width of 300~500 m and an intermittent extended length of 7 km has developed on the surface of this area. The rare Li-Be ores have been discovered during the current exploration in this area. To provide a reliable geochemical basis for the prospecting of rare metals and rare earth elements (REE) in areas with similar landscapes, this study conducted the grain-scale experiment and validity investigation in this study area using the large-scale micro-channel system geochemical survey technique. Based on the 1∶25,000 geochemical survey, grain sizes of -4~+ 20 meshes, -4~+ 40 meshes, -10~+ 40 meshes, and -10~+ 60 meshes were adopted in sampling for the experimental study in the zones bearing pegmatite veins. The contents of Cu, W, Sn, Be, Li, Nb, Rb, Zr, La, and Y were analyzed. The results show that relevant elements exhibited significant enrichment and dispersion characteristics and the geochemical distribution of these elements agreed well with the geological and mineral characteristics when grain sizes of -4~+ 40 meshes and -10~+ 40 meshes were adopted for the sampling of Be, Li, Nb, Rb, and Zr, grain sizes of -10~+ 40 meshes were adopted for the sampling of rare earth elements such as La and Y, and grain sizes of -10~+ 60 meshes were adopted for the sampling of nonferrous metal elements such as Cu, W, and Sn. The results of this study prove that the large-scale micro-channel system survey technique can obtain significant results in the geochemical prospecting of rare metals and REEs in areas with similar landscapes.

Key words1∶25,000 geochemical survey    micro-channel system    Li-Be rare ore    grain size    cold semi-arid grassland landscape    Qiemoge Mountain
收稿日期: 2021-12-26      修回日期: 2022-11-04      出版日期: 2023-06-20
ZTFLH:  P632  
基金资助:第二次青藏高原综合科学考察研究项目(2019QZKK0702);青海省地质矿产勘查开发局计划项目(2019048021jc013);青海省省级财政资金地质勘查项目(2020021051kc018)
作者简介: 保善东(1987-),男,高级工程师,研究方向为地球化学矿产勘查。Email:270533382@qq.com
引用本文:   
保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
BAO Shan-Dong, XIE Xiang-Lei, WANG Ya-Dong, XU Yun-Fu, ZHANG Xin-Yuan, ZENG Biao. Grain-scale experimental study of samples using the large-scale micro-channel system survey technique for the cold, semi-arid grassland landscape: A case study of the rare Li-Be ores in the Qiemoge Mountain. Geophysical and Geochemical Exploration, 2023, 47(3): 648-658.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2700      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/648
Fig.1  研究区大地构造位置
1—中祁连岩浆弧;2—南祁连岩浆弧;3—宗务隆山-夏河陆缘裂谷;4—全吉地块;5—滩间山岩浆弧;6—柴北缘蛇绿混杂岩带;7—柴达木盆地;8—祁漫塔格北坡-夏日哈岩浆弧;9—北昆仑岩浆弧;10—鄂拉山陆缘弧;11—泽库前陆盆地;12—边界断裂及研究区
Fig.2  锲墨格山地区地质
1—第四系地层;2—下-中三叠统隆务河组;3—石炭系-中二叠统果可山组; 4—石炭系-中二叠统土尔根大坂组;5—早二叠世石英闪长岩;6—花岗伟晶岩脉;7—锂/铍矿体; 8—逆断层及性质不明断层; 9—韧性剪切带; 10—地质界线; 11—采样点位及范围
Fig.3  研究区采样点位分布
样品粒级 参数 Be Cu La Li Nb Rb Sn W Y Zr
-4~+20目 最小值/10-6 1.25 11.40 19.20 11.00 6.50 43.70 1.36 0.32 12.30 89.30
最大值/10-6 50.70 165.00 46.30 161.00 20.10 295.00 10.29 9.27 40.00 239.00
平均值/10-6 2.59 22.54 34.23 49.66 11.84 100.99 2.51 1.13 20.92 139.58
中位数/10-6 2.38 22.00 34.00 36.20 10.85 101.00 2.38 0.91 20.95 131.00
标准离差/10-6 0.67 6.66 5.52 37.89 3.41 31.46 0.58 0.66 4.56 30.47
浓集系数 1.33 1.11 1.06 1.63 1.03 1.00 0.98 0.68 1.04 0.85
变异系数CV1 1.565 0.723 0.161 0.763 0.288 0.414 0.523 0.969 0.247 0.229
变异系数CV0 0.26 0.295 0.161 0.763 0.288 0.312 0.233 0.592 0.218 0.218
-4~+40目 最小值/10-6 1.45 10.60 22.10 8.40 6.50 40.70 1.44 0.33 13.70 89.10
最大值/10-6 55.80 78.60 55.40 198.00 18.80 343.00 10.47 182.00 35.80 223.00
平均值/10-6 2.69 23.76 32.45 45.47 12.13 106.30 2.61 1.12 20.65 143.75
中位数/10-6 2.48 24.20 31.70 39.20 11.45 113.00 2.45 0.95 20.20 136.00
标准离差/10-6 0.86 7.44 6.18 28.05 3.60 32.52 0.68 0.69 4.59 33.59
浓集系数 1.38 1.17 1.00 1.49 1.05 1.06 1.02 0.67 1.03 0.87
变异系数CV1 1.653 0.416 0.233 0.763 0.297 0.409 0.513 2.037 0.234 0.234
变异系数CV0 0.322 0.313 0.191 0.617 0.297 0.306 0.261 0.619 0.223 0.234
-10~+40目 最小值/10-6 1.51 11.90 23.20 15.90 6.80 47.70 1.39 0.33 12.20 79.50
最大值/10-6 58.00 73.30 88.00 168.00 20.00 243.00 12.48 11.40 50.60 237.00
平均值/10-6 2.60 22.42 34.85 39.04 12.39 104.63 2.49 1.50 23.18 141.90
中位数/10-6 2.55 21.85 34.90 36.30 11.80 106.00 2.48 1.51 22.25 136.00
标准离差/10-6 0.49 5.19 5.60 14.80 3.41 28.10 0.44 0.76 5.76 34.03
浓集系数 1.33 1.11 1.08 1.28 1.08 1.04 0.97 0.9 1.15 0.86
变异系数CV1 1.751 0.377 0.229 0.629 0.275 0.332 0.478 0.849 0.298 0.24
变异系数CV0 0.188 0.232 0.161 0.379 0.275 0.269 0.175 0.508 0.248 0.24
-10~+60目 最小值/10-6 1.03 6.37 14.40 11.30 6.70 43.40 1.04 0.36 9.50 53.90
最大值/10-6 54.30 81.60 47.40 175.00 24.40 382.00 13.49 22.70 39.70 256.00
平均值/10-6 2.30 23.57 32.60 38.11 12.30 97.60 2.45 1.20 20.63 129.29
中位数/10-6 2.17 23.00 31.70 32.65 11.05 95.80 2.19 0.96 19.10 120.50
标准离差/10-6 0.61 7.26 6.20 23.62 4.14 30.43 0.92 0.72 5.88 31.92
浓集系数 1.18 1.16 1.01 1.25 1.07 0.97 0.96 0.72 1.02 0.79
变异系数CV1 1.788 0.399 0.190 0.790 0.337 0.454 0.701 1.587 0.298 0.278
变异系数CV0 0.265 0.308 0.19 0.62 0.337 0.312 0.378 0.598 0.285 0.247
青海省丰度[17]/10-6 1.95 20.24 32.41 30.45 11.52 100.53 2.56 1.67 20.13 164.54
Table 1  研究区各样品截取粒级元素参数特征
Fig.4  各粒级浓集系数曲线
Fig.5  研究区各粒级变异系数CV1曲线(a)和CV1/CV0曲线(b)
Fig.6  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Be地球化学分布
Fig.7  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Li地球化学分布
Fig.8  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Rb地球化学分布
Fig.9  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Nb地球化学分布
Fig.10  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Zr地球化学分布
Fig.11  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中La地球化学分布
Fig.12  -4~+20目(a)、-4~+40目(b)、-10~+40目(c)、-10~+60目(d)样品中Y地球化学分布
[1] 张素荣, 杨帆, 张华, 等. 青藏高原条件下现场分析方法的适应性[J]. 物探与化探, 2014, 38(1):100-105.
[1] Zhang S R, Yang F, Zhang H, et al. The suitability of field analytical methods under the special conditions of Tibetan plateau[J]. Geophysical and Geochemical Exploration, 2014, 38(1):100-105.
[2] 李超, 罗先熔, 邱炜, 等. 青海省都兰县金水口地区水系沉积物地球化学异常特征及找矿前景[J]. 现代地质, 2021, 35(5):1397-1410.
[2] Li C, Luo X R, Qiu W, et al. Geochemical anomalies characteristics of stream sediments and ore-search prospect in Jinshuikou area of Dulan County,Qinghai Province[J]. Geoscience, 2021, 35(5):1397-1410.
[3] 严明书, 李瑜, 鲍丽然, 等. 1∶5万水系沉积物地球化学特征及找矿意义[J]. 物探与化探, 2016, 40(1):10-16.
[3] Yan M S, Li Y, Bao L R, et al. Geochemical characteristics of 1∶50,000 stream sediments and in Xainza,Tibet,and their prospecting significance[J]. Geophysical and Geochemical Exploration, 2016, 40(1):10-16.
[4] 安朝, 杨敏, 陈熙, 等. 东昆仑东段都兰地区地球化学特征及其成矿意义——基于大比例尺微沟系(土壤)测量工作[J]. 地质与勘探, 2020, 56(6):1158-1169.
[4] An Z, Yang M, Chen X, et al. Geochemical characteristics and metallogenic significance of the Dulan area in the eastern section of the East Kunlun Mountains derived from large-scale micro channel system (soil) measurement[J]. Geology and Exploration, 2020, 56(6):1158-1169.
[5] 丁兆举, 常昊, 张年生, 等. 热带雨林景观土壤测量采样深度与样品粒级试验研究——以加纳国雅卡锰金矿为例[J]. 地质与勘探, 2021, 57(3):554-562.
[5] Ding Z J, Chang H, Zhang N S, et al. Experimental study on sampling depth and sample granularity of soil survey in tropical rainforest landscape:Taken the Yakau Mn-Au deposit in Ghana as an example[J]. Geology and Exploration, 2021, 57(3):554-562.
[6] 陈化奇, 李永庆. 岩屑测量方法在干旱荒漠区的找矿效果——以贺兰山北段嘎拉斯台白钨矿的发现为例[J]. 物探与化探, 2019, 43(1):55-63.
[6] Chen H Q, Li Y Q. The prospecting effect of rock debris measurement method in arid desert area:Exemplified by the discovery of the Galasitaischeelite deposit in northern Helan Mountain[J]. Geophysical and Geochemical Exploration, 2019, 43(1):55-63.
[7] 李冲, 郝志红, 张忠进. 广东北市地区1∶5万水系沉积物测量粒级试验[J]. 物探与化探, 2018, 42(2):303-311.
[7] Li C, Hao Z H, Zhang Z J. A study on 1∶50,000 stream sediments survey in Beishiarea,Guangdong Province[J]. Geophysical and Geochemical Exploration, 2018, 42(2):303-311.
[8] 赵娟, 马正婷, 柴云, 等. 青海省冷湖行委俄博梁地区稀有稀土元素地球化学特征及找矿潜力分析[J]. 西北地质, 2021, 54(4):82-87.
[8] Zhao J, Ma Z T, Chai Y, et al. Geochemical characteristics and prospecting potential of rare rare-earth element in Eboliang area,Lenghu,Qinghai Province[J]. Northwestern Geology, 2021, 54(4):82-87.
[9] 车鑫. 青海省天峻县国土空间地理特征研究[D]. 西宁: 青海民族大学, 2020.
[9] Che X. Study on the spatial and geographical characteristics of land in Tianjun County of Qinghai Province[D]. Xining: Qinghai Nationalities University, 2020.
[10] 王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1):69-79.
[10] Wang B Z, Han J, Xie X L, et al. The Discovery of the indosinian(beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area on the northeastern margin of the Tibetan Plateau:Implications for Li-Be mineralziation[J]. Geotectonica et Metallogenia, 2020, 44(1):69-79.
[11] 王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5):569-580.
[11] Wang D H, Wang R J, Sun Y, et al. A review of achievements in the three-type rare mineral resources(rare resources,rare earth and rarely scattered resources)survey in China[J]. Acta Geoscientica Sinica, 2016, 37(5):569-580.
[12] 李贤芳, 张玉洁, 田世洪. 锂同位素在伟晶岩矿床成因研究中的应用[J]. 中国地质, 2019, 46(2):419-429.
[12] Li X F, Zhang Y J, Tian S H. Application of lithium isotopes in genetic study of pegmatite deposits[J]. Geology in China, 2019, 46(2):419-429.
[13] 邱瑜, 卢佳, 田滔, 等. 1∶25,000沟系沉积物地球化学测量方法有效性探讨——以东昆仑巴隆地区为例[J]. 物探化探计算技术, 2019, 41(2):250-256.
[13] Qiu Y, Lu J, Tian T, et al. A discussion of effectiveness to the 1∶25,000 sulcus sediments geochemical survey:The Balong area of east Kunlun as an example[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(2):250-256.
[14] 冷福荣, 李志强. 1∶20万区域化探方法核心技术“取样粒级”的讨论[J]. 物探与化探, 2009, 33(6):678-685.
[14] Leng F R, Li Z Q. A Discussion on the "Samplinggrade",a key technology in 1∶200,000 regional geochemical exploratioa[J]. Geophysical and Geochemical Exploration, 2009, 33(6):678-685.
[15] 陶春军, 贾十军, 陈富荣, 等. 安徽北淮阳典型矿区水系沉积物采样方法[J]. 物探与化探, 2016, 40(5):853-860.
[15] Tao C J, Jia S J, Chen F R, et al. Research on sampling methods for stream sediments survey in the typical ore district of northern Huaiyang area in Anhui Province[J]. Geophysical and Geochemical Exploration, 2016, 40(5):853-860.
[16] 夏锦霞, 李方林, 杨东, 等. 用地球化学异常图和方差分析比较两种采样粒级的化探效果[J]. 物探与化探, 2009, 33(5):524-528.
[16] Xia J X, Li F L, Yang D, et al. The application of geochemical anomaly map and varaiance analysis to comparing gochemical exploration effects of two sizes of fractions[J]. Geophysical and Geochemical Exploration, 2009, 33(5):524-528.
[17] 吴正寿, 赵呈祥, 易平乾, 等. 青海省矿产资源调查评价成果报告[R]. 青海省地质调查院, 2013.
[17] Wu Z S, Zhao C X, Yi P Q, et al. Investigation and evaluation of mineral resources in Qinghai Province[R]. Qinghai Geological Survey Institute, 2013.
[18] 张晶, 杨帆, 刘明义, 等. 稀土配分模式在确定西天山风积物干扰粒级中的应用研究[J]. 西北地质, 2014, 47(2):126-131.
[18] Zhang J, Yang F, Liu M Y, et al. Application of REE assemblage in determining the interference granularity of aeolian sediments in West Tianshan[J]. Northwestern Geology, 2014, 47(2):126-131.
[19] 王乔林. 土壤地球化学测量在甘肃北山白头山铷矿找矿中的应用[J]. 地质与勘探, 2021, 57(1):110-121.
[19] Wang Q L. Application of soil geochemical survey in the Baitoushan rubidium deposit,Beishan area,Gansu Province[J]. Geology and Exploration, 2021, 57(1):110-121.
[20] 王平, 谈艳, 黄银宝, 等. 沟系岩屑测量在青海省都兰县苏更地区钼矿找矿中的应用[J]. 黄金, 2017, 38(8):16-20.
[20] Wang P, Tan Y, Huang Y B, et al. Application of ravine debris survey in the prospectingof molybdenum deposits in Sugeng Region,Dulan County,Qinghai Province[J]. Gold, 2017, 38(8):16-20.
[1] 唐世新, 李建军, 马生明. 内蒙古东部运积物覆盖区地球化学勘查方法对比[J]. 物探与化探, 2018, 42(3): 499-505.
[2] 李冲, 郝志红, 张忠进. 广东北市地区1∶5万水系沉积物测量粒级试验[J]. 物探与化探, 2018, 42(2): 303-311.
[3] 申伍军, 白春东, 陈圆圆, 张新政. 冀北蔡家营地区隐伏矿地球化学勘查方法[J]. 物探与化探, 2017, 41(2): 210-218.
[4] 陶春军, 贾十军, 陈富荣, 刘超. 安徽北淮阳典型矿区水系沉积物采样方法[J]. 物探与化探, 2016, 40(5): 853-860.
[5] 张素荣, 杨帆, 张华, 贺福清. 青藏高原条件下现场分析方法的适应性[J]. 物探与化探, 2014, 38(1): 100-105.
[6] 张必敏, 王学求, 贺灵, 周建, 刘汉粮. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验[J]. 物探与化探, 2013, 37(5): 804-810.
[7] 冷福荣, 李志强.  1∶20万区域化探方法核心技术“取样粒级”的讨论[J]. 物探与化探, 2009, 33(6): 678-685.
[8] 胡忠贤, 程志中, 王学求. 黑龙江省中部森林沼泽区金在土壤A层中的富集规律[J]. 物探与化探, 2008, 32(1): 33-35.
[9] 孙忠军, 刘华忠, 于兆云, 李文春, 梁金全. 青海高寒湖沼景观区风成沙对成矿元素迁移的扰动机制的研究[J]. 物探与化探, 2003, 27(3): 167-170,175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com