Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 39-46    DOI: 10.11720/wtyht.2023.2569
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
新疆甜水海地区红山湖泉水化学特征及其意义
肖睿1(), 庞守吉1(), 祝有海1, 张帅1, 邹燚1,2
1.中国地质调查局 油气资源调查中心,北京 100083
2.中国地质大学(北京) 地球科学与资源学院,北京 100083
Hydrochemical characteristics and significance of the Hongshan Lake in the Tianshuihai area, Xinjiang, China
XIAO Rui1(), PANG Shou-Ji1(), ZHU You-Hai1, ZHANG Shuai1, ZOU Yi1,2
1. Oil & Gas Survey, China Geological Survey, Beijing 100083, China
2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(3802 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过开展甜水海地区红山湖的泉水与湖水水文地球化学相关测试分析,探索区内水化学成分形成过程以及水体地球化学特征与来源,从而获得与油气有关的水文地球化学信息。结果显示:红山湖泉水总体呈弱碱性,以微咸水为主,水体主要离子质量浓度随着矿化度增加而增加,水化学类型为Na-HCO3型;其主要补给为大气降水,且补给的大气降水在顺断裂或裂隙深循环过程中与围岩发生了水岩作用;矿化度、水化学类型以及泉水特征系数指示其代表的地下水体水动力较弱,且变质程度较深,与油田中油气伴生的地层水特征相似,推断该区地质环境整体利于油气形成与保存。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖睿
庞守吉
祝有海
张帅
邹燚
关键词 红山湖泉水地球化学特征油气    
Abstract

Focusing on the spring and lake water in the Hongshan Lake in the Tianshuihai area, Xinjiang, China, this study explored the formation process of the hydrochemical components in the water and the geochemical characteristics and sources of the water bodies through hydrogeochemical testing and analyses. Accordingly, the hydrocarbon-related hydrogeochemical information was obtained. The results are as follows: The spring water in the Hongshan Lake is weakly alkaline in general and dominated by brackish water. The mass concentration of main ions in the water bodies increases with increasing salinity. The water has a hydrochemical type of Na-HCO3 and is mainly charged by atmospheric precipitation, which interacts with the surrounding rocks during the deep circulation along faults or fractures. The salinity, hydrochemical type, and characteristic coefficient of spring water indicate that the groundwater in this area features weak hydrodynamic force and deep metamorphic degree, which are similar to the characteristics of the formation water associated with hydrocarbon in oil fields. Therefore, it can be inferred that the geological environment in this area is conducive to the generation and preservation of hydrocarbon resources.

Key wordsHongshan Lake    spring water    geochemical characteristics    hydrocarbon
收稿日期: 2021-10-18      修回日期: 2022-01-17      出版日期: 2023-02-20
ZTFLH:  P632  
基金资助:广东省基础与应用基础研究重大项目(2020B0301030003);中国地质调查局地质调查项目“天然气水合物产能模拟与调控”(DD20211350);“陆域冻土区天然气水合物资源综合调查”(DD20190102)
通讯作者: 庞守吉(1982-),男,教授级高工,天然气水合物调查研究方向。Email:psj0409@163.com
作者简介: 肖睿(1990-),男,工程师,天然气水合物调查研究方向。Email:didaxr@163.com
引用本文:   
肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
XIAO Rui, PANG Shou-Ji, ZHU You-Hai, ZHANG Shuai, ZOU Yi. Hydrochemical characteristics and significance of the Hongshan Lake in the Tianshuihai area, Xinjiang, China. Geophysical and Geochemical Exploration, 2023, 47(1): 39-46.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2569      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/39
Fig.1  研究区地质略图(据文献[20]改编)
a—西昆仑及邻区地质构造略图;b—研究区地质略图;c—水体样品采样分布
编号 采样点 矿化度/
(mg·L-1)
水体化
学类型
电导率/
(μs·cm-1)
pH
δD
V-SMOW
δO
V-SMOW
阴、阳离子浓度/(mg·L-1)
F- Cl- NO 3 - SO 4 2 - Na+ K + Mg2+ Ca2+ HCO 3 -
W1 间歇性冷泉水 2370 微咸水 3207 7.68 -96.1 -13.0 0.440 642 <0.08 94.5 555 25.3 47.9 113.0 891
W2 泉华水,水中出现
钙华,池底发白
2102 微咸水 2897 7.98 -83.7 -11.3 0.540 616 <0.08 95.5 553 25.8 49.8 55.1 707
W3 泉华水,间歇性冷
泉喷口处
1983 微咸水 2826 7.99 -84.5 -11.0 0.460 515 <0.08 83.4 499 24.5 45.7 68.9 747
W4 钙华区水 2093 微咸水 3032 7.98 -88.0 -11.3 0.520 573 <0.08 105.0 481 24.4 51.8 88.0 768
W5 最新形成的碳酸盐区 2091 微咸水 2963 7.4 -94.0 -12.6 0.560 506 <0.08 104.0 447 21.5 46.5 125.0 841
W6 冷泉渗流口 3076 咸水 2896 7.28 -93.9 -11.9 0.560 815 <0.08 112.0 693 28.9 55.9 186.0 1184
W7 底部呈红色的水体 2110 微咸水 4222 7.74 -91.0 -11.9 0.580 537 <0.08 93.0 495 24.4 49.5 93.1 817
W8 湖水样 119177 盐水 137000 8.07 -60.3 -8.1 <0.02 64082 <0.08 8938.0 41149 1238.0 2407.0 538.0 825
Table 1  研究区水体化学分析结果
Fig.2  离子浓度图解
a—泉水主要离子总含量; b—湖水主要离子总含量; c—主要阴离子所占的百分比; d—主要阳离子所占的百分比
Fig.3  研究区水体离子浓度Piper图
Fig.4  研究区水体氢氧同位素关系
Fig.5  研究区泉水的Gibbs 图式
[1] Ali S, Thakur S K, Sarkar A, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14(3):291 - 315.
doi: 10.1007/s10311-016-0563-5
[2] Zhao G, Li W, Li F, et al. Hydrochemistry of waters in snowpacks,lakes and streams of Mt.Dagu,eastern of Tibet Plateau[J]. Science of the Total Environment, 2018(610/611):641-650.
[3] Wu C, Wu X, Qian C, et al. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region,northwest China[J]. Applied Geochemistry, 2018, 98:404-417.
doi: 10.1016/j.apgeochem.2018.10.016
[4] Rashid A, Guan D X, Farooqi A, et al. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat,Pakistan[J]. Science of The Total Environment, 2018, 635:203-215.
doi: 10.1016/j.scitotenv.2018.04.064
[5] Li Z J, Yang Q C, Yang Y S, et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology, 2019(576):685-697
[6] Yan J, Chen J, Zhang W, et al. Determining fluoride distribution and influencing factors in groundwater in Songyuan,Northeast China,using hydrochemical and isotopic methods[J]. Journal of Geochemical Exploration, 2020, 217:106605.
doi: 10.1016/j.gexplo.2020.106605
[7] 刘崇禧, 张学全. 地下水中可溶气态烃的石油化探效果[J]. 物探与化探, 1985, 9(2):92-99.
[7] Liu C X, Zhang X Q. The application of soluble gaseoushydrocarbon in underground water togeochemical petroleum exploration[J]. Geophysical and Geochemical Exploration, 1985, 9(2):92-99.
[8] 钱诗友, 曾溅辉. 东营凹陷沙河街组地层水化学特征及其石油地质意义[J]. 天然气地球科学, 2009, 20(4):603-609.
[8] Qian S Y, Zeng J H. Chemical characteristics of Shahejie formation water and their petroleum geological significance,Dongying Sag[J]. Natural Gas Geoscience, 2009, 20(4) :603-609.
[9] 张秋, 谭志伟, 张作祥, 等. 贝尔凹陷水文地球化学特征与油气藏的关系[J]. 物探与化探, 2011, 35(1):37-41.
[9] Zhang Q, Tan Z W, Zhang Z X, et al. Hydrogeochemical characteristics of Beier depressionin relation to oil and gas reservoirs[J]. Geophysical and Geochemical Exploration, 2011, 35(1):37-41.
[10] 张志攀, 祝有海, 苏新. 羌塘盆地泉水化学特征及其意义[J]. 地质学报, 2011, 85(7):1233-1238.
[10] Zhang Z P, Zhu Y H, Su X. Chemic charactoristics of fountains in Qiangtang Basin Qinghai-Tibet Plateau and its implications[J]. Acta Geologica, 2011, 85(7):1233-1238.
[11] 梁晓伟, 牛小兵, 李卫成, 等. 鄂尔多斯盆地油田水化学特征及地质意义[J]. 成都理工大学学报:自然科学版, 2012, 39(5):502-508.
[11] Liang X W, Niu X B, Li W C, et al. Chemical character of oil-field water in Ordos Basin and geological significance[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2012, 39(5):502-508.
[12] 李博秦, 姚建新, 高联达, 等. 西昆仑麻扎—康西瓦一带温泉沟群的形成时代及物源区分析[J]. 地质通报, 2007, 26(4):457-465.
[12] Li B Q, Yao J X, Gao L D, et al. Age and source regions of the Wenquangou Group in the Mazar-Kangxiwar area,West Kunlun Mountains[J]. Geological Bulletin of China, 2007, 26(4):457-465.
[13] 王炬川, 崔建堂, 罗乾周, 等. 喀喇昆仑南部侏罗系龙山组沉积环境分析及构造环境初探[J]. 陕西地质, 2004, 22(1):17-23.
[13] Wang J C, Cui J T, Luo Q Z, et al. Analysis of the sedimentary environment and discussion of the structural setting of the Jurassic Longshan Formation in the southern Kunlun of Gela[J]. Geology of Shaanxi, 2004, 22(1):17-23.
[14] 崔建堂, 王炬川, 边小卫, 等. 新疆喀喇昆仑地区甜水海岩群发现青白口纪叠层石[J]. 沉积与特提斯地质, 2005, 25(1/2):194-197.
[14] Cui J T, Wang J C, Bian X W, et al. The Qingbaikouan stromatolites from the Tianshuihai Group Complex in the Karakorum region,Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2005, 25(1/2):194-197.
[15] 李海兵, Franck Valli, 许志琴, 等. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006, 33(2):239-255.
[15] Li H B, Franck Valli, Xu Z Q, et al. Deformation and tectonic evolution of the Karakorum Fault,western Tibet[J]. Geology in China, 2006, 33(2):239-255.
[16] 林清茶, 夏斌, 张玉泉. 西昆仑—喀喇昆仑地区钾质碱性岩Ar-Ar年龄——以羊湖、昝坎和苦子干岩体为例[J]. 矿物岩石, 2006, 26(2):66-70.
[16] Lin Q C, Xia B, Zhang Y Q. Ar-Ar dating of potassic alkali-rocks in the western Kunlun-Kalakorum Mountains—Example for the rocks of Yanghu,Zankan and Kuzigan[J]. Journal of Mineralogy and Petrology, 2006, 26(2):66-70.
[17] 周军, 任燕. 新疆西昆仑岔路口—甜水海地区铅锌资源地球化学定量预测[J]. 物探与化探, 2014, 38(2):220-226.
[17] Zhou J, Ren Y. Geochemical quantitative prediction of lead-zinc resources in Chalukou-Tianshuihai area of west Kunlun Mountains,Xinjiang[J]. Geophysical and Geochemical Exploration, 2014, 38(2):220-226.
[18] 谢渝, 陶玲, 李惠, 等. 西昆仑甜水海地区地球化学普查及其找矿效果[J]. 物探与化探, 2017, 41(3):410-420.
[18] Xie Y, Tao L, Li H, et al. The application of geochemical exploration to geological prospecting in Tianshuihai area of Western Kunlun Mountains[J]. Geophysical and Geochemical Exploration, 2017, 41(3):410-420.
[19] 杨华, 梁月明. 全国航磁ΔT异常与中国地学断块构造[J]. 物探与化探, 2013, 37(6):957-967.
[19] Yang H, Liang Y M. Nationwide aeromagnetic ΔT anomalies and China’s geoscience block structures[J]. Geophysical and Geochemical Exploration, 2013, 37(6):957-967.
[20] 周能武, 陈邦学, 朱彦菲, 等. 西昆仑岔路口西花岗岩地球化学特征及构造意义[J]. 新疆地质, 2016, 34(4):437-445.
[20] Zhou N W, Chen B X, Zhu Y F, et al. Geochemistry and tectonic significance of granite from the west of Chalukou in western Kunlun,NW China[J]. Xinjiang Geology, 2016, 34(4):437-445.
[21] 边小卫, 王炬川, 罗乾周, 等. 甜水海微陆块上二叠系地层的厘定及其特征[J]. 陕西地质, 2005, 23(2):44-49,75.
[21] Bian X W, Wang J C, Luo Q Z, et al. Determination of the Permian system discovered on the micro-landmass in a freshwater sea and the characteristics[J]. Geology of Shaanxi, 2005, 23(2):44-49,75.
[22] 李世杰, 张宏亮, 施雅风, 等. 青藏高原甜水海盆地MIS 3阶段湖泊沉积与环境变化[J]. 第四纪研究, 2008, 28(1):122-131.
[22] Li S J, Zhang H L, Shi Y F, Zhu Z Y, et al. A high resolution MIS 3 environmental change environmental record derived from lacustrine deposit of Tianshuihai Lake,Qinghai-Tibet Plateau[J]. Quaternary Sciences, 2008, 28(1):122-131.
[23] 罗伟, 李佑国, 彭静, 等. 西昆仑地区水系沉积物地球化学异常识别[J]. 物探与化探, 2016, 40(4):722-727.
[23] Luo W, Li Y G, Peng J, et al. The identification of stream sediment geochemical anomalies in West Kunlun region[J]. Geophysical and Geochemical Exploration, 2016, 40(4):722-727.
[24] 王海雷, 郑绵平. 青藏高原湖泊水化学与盐度的相关性初步研究[J]. 地质学报, 2010, 84(10):1517-1522.
[24] Wang H L, Zheng M P. Priliminary study on relationship between hydrochemistry and salinity of lakes in the Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 2010, 84(10):1517-1522.
[25] 王鹏, 尚英男, 沈立成, 等. 青藏高原淡水湖泊水化学组成特征及其演化[J]. 环境科学, 2013, 34(3):874-881.
[25] Wang P, Shang Y N, Shen L C, et al. Characteristics and evolution of hydrochemical compositions of freshwater lake in Tibetan Plateau[J]. Environmental Science, 2013, 34(3):874-881.
[26] 李承鼎, 康世昌, 刘勇勤, 等. 西藏湖泊水体中主要离子分布特征及其对区域气候变化的响应[J]. 湖泊科学, 2016, 28(4):743-754.
[26] Li C D, Kang S C, Liu Y Q, et al. Distribution of major ions in waters and their response to regional climatic change in Tibetan lakes[J]. Journal of Lake Sciences, 2016, 28(4):743-754.
doi: 10.18307/2016.0407
[27] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008.
[27] Lu S F, Zhang M. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008.
[28] 王启军, 陈建渝. 油气地球化学[M]. 武汉: 中国地质大学出版社,1988.
[28] Wang Q J, Chen J Y. Petroleum geochemistry[M]. Wuhan: China University of Geosciences Press,1988.
[29] 陈义才, 沈忠民, 罗小平. 石油和天然气有机地球化学[M]. 武汉: 中国地质大学出版社, 2007.
[29] Chen Y C, Shen Z M, Luo X P. Oil & gas organic geochemistry[M]. Wuhan: China University of Geosciences Press, 2007
[30] 胡绪龙, 李瑾, 张敏, 等. 地层水化学特征参数判断气藏保存条件——以呼图壁、霍尔果斯油气田为例[J]. 天然气勘探与开发, 2008, 31(4):23-26,82-83.
[30] Hu X L, Li J, Zhang M, et al. Judge gas reservoir preservation by chemical characteristic parameters of formation water:Examples from Hutubi and Horgos oil-gas fields[J]. Natural Gas Exploration & Development, 2008, 31(4):23-26,82-83.
[31] 林晓英, 曾溅辉, 杨海军, 等. 塔里木盆地哈得逊油田石炭系地层水化学特征及成因[J]. 现代地质, 2012, 26(2):377-383.
[31] Lin X Y, Zeng J H, Yang H J, et al. Geochemical characteristics and origin of formation water from the Carboniferous in Hadson oil field,Tarim Basin[J]. Geoscience, 2012, 26(2):377-383.
[32] 李建森, 董华庆, 姜有旭, 等. 大柴旦温泉沟泉的地球化学成因[J]. 盐湖研究, 2017, 25(2):55-59.
[32] Li J S, Dong H Q, Jiang Y X, et al. Geochemical genesis of the springs in Wenquan Ditch of Da Qaidam area[J]. Journal of Salt Lake Research, 2017, 25(2):55-59.
[33] 杨丽杰, 侯读杰, 陈晓东, 等. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义[J]. 天然气地球科学, 2018, 29(4):559-571,596.
[33] Yang L J, Hou D J, Chen X D, et al. Chemical characteristics and geological significance of Palaeogene formation water in central Xihu Depression,East China Sea Basin[J]. Natural Gas Geoscience, 2018, 29(4):559-571,596.
[34] 韩佳君, 周训, 姜长龙, 等. 柴达木盆地西部地下卤水水化学特征及其起源演化[J]. 现代地质, 2013, 27(6):1454-1464.
[34] Han J J, Zhou X, Jiang C L, et al. Hydrochemical characteristics,origin and evolution of the subsurface brines in western Qaidam Basin[J]. Geoscience, 2013, 27(6):1454-1464.
[35] 牛新生, 黄华, 郑绵平. 江汉盆地潜江凹陷地下卤水地球化学特征和分布规律[J]. 地学前缘, 2021, 28(6):56-65.
doi: 10.13745/j.esf.sf.2021.1.42
[35] Niu X S, Huang H, Zheng M P. Geochemical characteristics and distribution patterns of subsurface brines in the Qiangjiang Depression,Jianghan Basin[J]. Earth Science Frontiers, 2021, 28(6):56-65.
[36] 邢晓红, 刘桂民, 李红琴, 等. 哈思山地区泉水成因及其氢氧稳定同位素特征探讨[J]. 水文, 2016, 36(2):46-50.
[36] Xing X H, Liu G M, Li H Q, et al. Sources of spring water and its characteristics of hydrogen and oxygen stable isotopes in Hasi Mountain[J]. Journal of China Hydrology, 2016, 36(2):46-50.
[37] 张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(4):194-205.
doi: 10.13745/j.esf.sf.2020.6.40
[37] Zhang J T, Shi Z M, Wang G C, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area,Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(4):194-205.
[1] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[2] 刘云祥, 司华陆, 乔海燕, 刘百川. 中国油气重磁勘探技术进步与展望[J]. 物探与化探, 2023, 47(3): 563-574.
[3] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[4] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[5] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[6] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[7] 马常莲, 周金龙, 曾妍妍, 任贵兵, 王松涛. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
[8] 张哲寰, 戴慧敏, 宋运红, 杨佳佳. 黑龙江省乌裕尔河流域土壤中某些微量元素地球化学特征[J]. 物探与化探, 2022, 46(5): 1097-1104.
[9] 李永春, 苏日力格, 周文辉, 邰苏日嘎拉, 陈国栋, 王永亮, 高琪, 张祥, 张栋. 宁夏南部山区葫芦河流域土壤地球化学特征及影响因素分析[J]. 物探与化探, 2022, 46(4): 999-1010.
[10] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3): 750-760.
[11] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[12] 李武, 王国建, 蒋涛, 邹雨, 罗昕, 郭嘉琪, 汤玉平, 陈浙春. 塔里木盆地玉北地区活动态油气化探指标应用效果分析[J]. 物探与化探, 2022, 46(2): 296-303.
[13] 钟广见, 张莉, 邓桂林, 易海, 冯常茂, 孙鸣, 赵静, 赵忠泉. 长排列大容量准三维地震勘查技术在湍流海区的应用[J]. 物探与化探, 2022, 46(2): 402-409.
[14] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[15] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com