Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 1021-1029    DOI: 10.11720/wtyht.2022.1421
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
菏泽市水系沉积物重金属特征及风险评估
徐雄1(), 孙艳亭1, 肖方1, 肖培平1, 董应尚1, 李敏2()
1.山东省菏泽生态环境监测中心,山东 菏泽 274000
2.菏泽学院 农业与生物工程学院,山东 菏泽 274000
Characteristics and risk assessment of the heavy metals in stream sediments of Heze City
XU Xiong1(), SUN Yan-Ting1, XIAO Fang1, XIAO Pei-Ping1, DONG Ying-Shang1, LI Min2()
1. Heze Ecological Environment Monitoring Center of Shandong Province, Heze 274000, China
2. College of Agricultural and Biological Engineering, Heze University, Heze 274000, China
全文: PDF(4931 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探讨南水北调东线重要汇水区菏泽市水系沉积物重金属特征、污染来源及环境风险,采集了菏泽市3个主要流域25个点位的水系沉积物进行6种重金属(Cu、Zn、Ni、Cr、Cd、Pb)含量分析,并利用污染负荷指数法、潜在生态风险指数法和对数回归模型法进行风险评估,利用相关性和主成分分析判别重金属污染来源。结果表明,研究区各流域水系沉积物重金属含量普遍高于背景值,所有点位Ni、Cd含量均超背景值,其中Cd有40%点位超3倍背景值。各流域水系沉积物重金属含量分布不均,6种重金属极大值均出现在洙赵新河流域,其污染负荷指数(PLI)、潜在生态风险指数(RI)、毒性比值(Y)分别为1.62、123和0.367,均高于其余两流域,属于中度污染,具有较强生态风险,可能对水生生物造成危害。主成分分析表明造成研究区内6种重金属富集的主要来源是工业园区内石油炼制及相关化工企业。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐雄
孙艳亭
肖方
肖培平
董应尚
李敏
关键词 水系沉积物重金属风险评估    
Abstract

This study aims to investigate the characteristics, pollution sources, and ecological risks of heavy metals in the stream sediments in Heze City, which is an important catchment area in the east route of the South-to-North Water Diversion Project. To this end, stream sediment samples were collected from 25 sites of three major river basins in Heze City, and the contents of Cu, Zn, Ni, Cr, Cd, and Pb in the samples were analyzed. Moreover, this study assessed the ecological risks of these heavy metal elements using the pollution load index (PLI), potential ecological risk index (RI), and logarithmic regression model and determined the pollution sources of these heavy metal elements through correlation and principal component analysis. The results are as follows. The contents of the six heavy metal elements in the stream sediment samples were generally higher than their background values. The Ni and Cd contents at all investigated sites exceeded their background values, especially the Cd content at 40% of the investigated sites, which was more than three times the background value. The heavy metals in the stream sediments of the three river basins are unevenly distributed. The maximum values of the six heavy metals all originated from the samples of the Zhuzhaoxin River basin, of which the PLI, RI, and toxicity ratio Y were 1.67, 123 and 0.367, respectively. These values were higher than those of the other two basins, indicating that the heavy metals in sediments of the Zhuzhaoxin River basin reach moderate pollution and have high ecological risks and potential harm to aquatic organisms. The principal component analysis shows that the petroleum refining and related chemical enterprises in industrial parks are the main contributors to the enrichment of the six heavy metal elements.

Key wordsstream sediment    heavy metal    risk assessment
收稿日期: 2021-08-01      修回日期: 2021-12-19      出版日期: 2022-08-20
ZTFLH:  P632  
基金资助:菏泽学院科研项目(XY17KJ07)
通讯作者: 李敏
作者简介: 徐雄(1979-),男,硕士,高级工程师,主要从事土壤和水生态环境监测与研究工作。Email: xuxiong@hz.shandong.cn
引用本文:   
徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
XU Xiong, SUN Yan-Ting, XIAO Fang, XIAO Pei-Ping, DONG Ying-Shang, LI Min. Characteristics and risk assessment of the heavy metals in stream sediments of Heze City. Geophysical and Geochemical Exploration, 2022, 46(4): 1021-1029.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1421      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/1021
Fig.1  研究区位置及采样点位分布
污染负荷指数 污染等级 污染程度
PLI<1 0 无污染
1≤PLI<2 I 中度污染
2≤PLI<3 II 强污染
PLI≥3 III 极强污染
Table 1  不同污染负荷指数对应的污染等级和污染程度
潜在生态风险系数(Er) 潜在生态风险指数(RI)
分级标准 风险等级 分级标准 风险等级
Er<40 轻微生态风险 RI<60 轻微生态风险
40≤Er<80 中等生态风险 60≤RI<120 中等生态风险
80≤Er<160 较强生态风险 120≤RI<240 较强生态风险
160≤Er<320 强烈生态风险 RI≥240 极强生态风险
Er≥320 极强生态风险
Table 2  潜在生态风险评价分级标准及对应风险等级
参数 Cu Zn Ni Cr Cd Pb
截距B0 -5.79 -7.98 -4.61 -6.44 -0.34 -5.45
斜率B1 2.93 3.34 2.77 3.00 2.51 2.77
Table 3  对数回归模型中重金属元素对应的截距和斜率参数
参数 Cu Zn Ni Cr Cd Pb





含量范围/10-6 32.7~53.6 52.4~120.0 31.2~61.4 52.2~139.0 0.165~0.417 20.9~44.1
平均值/10-6 40.2 84.4 44.5 80.3 0.269 31.1
标准偏差/10-6 7.5 23.5 10.9 27.6 0.078 6.2
变异系数/% 18.6 27.9 24.5 34.3 28.9 19.9
背景值/10-6 24.0 63.5 25.8 66.0 0.084 25.8
Cf 1.68 1.33 1.72 1.22 3.20 1.20
E r i 8.40 1.33 8.60 2.44 96.0 6.00
超背景值点位占比/% 100 70 100 70 100 80




含量范围/10-6 15.5~41.6 62.8~87.6 27.8~57.3 54.1~92.3 0.173~0.367 22.7~37.6
平均值/10-6 27.4 74.2 42.9 69.3 0.254 29.9
标准偏差/10-6 8.7 10.5 10.2 11.5 0.079 4.9
变异系数/% 31.8 14.2 23.7 16.5 31.0 16.3
背景值/10-6 24.0 63.5 25.8 66.0 0.084 25.8
Cf 1.14 1.17 1.66 1.05 3.02 1.16
E r i 5.70 1.17 8.30 2.10 90.6 5.80
超背景值点位占比/% 62.5 87.5 100 62.5 100 75




含量范围/10-6 18.5~48.4 55.3~108.0 28.1~59.3 51.2~94.5 0.133~0.336 20.4~41.5
平均值/10-6 33.3 78.3 39.2 72.9 0.212 30.4
标准偏差/10-6 13.0 18.3 11.0 16.1 0.070 8.6
变异系数/% 39.1 23.4 28.1 22.1 32.8 28.1
背景值/10-6 24.0 63.5 25.8 66.0 0.084 25.8
Cf 1.39 1.23 1.52 1.11 2.53 1.18
E r i 6.95 1.23 7.60 2.22 75.9 5.90
超背景值点位占比/% 57.1 71.4 100 57.1 100 57.1
Table 4  不同流域水系沉积物重金属统计结果描述
Fig.2  不同流域沉积物重金属差异
Cu、Zn、Ni、Cr、Pb含量单位为10-6;Cd含量单位为10-8
污染因子 污染程度 Cu Zn Ni Cr Cd Pb
点位 占比 点位 占比 点位 占比 点位 占比 点位 占比 点位 占比
Cf<1 低度 6 24% 6 24% 0 0% 9 36% 0 0% 7 28%
1≤Cf<3 中度 19 76% 19 76% 25 100% 16 64% 15 60% 18 72%
3≤Cf<6 重度 0 0% 0 0% 0 0% 0 0% 10 40% 0 0%
Cf≥6 严重 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Table 5  沉积物重金属污染因子评价结果
研究区域 Cf PLI
Cu Zn Ni Cr Cd Pb
宝鸡千河[6] 0.20 0.76 0.17 0.64 0.61 0.40
嘉兴河网[14] 3.13 4.02 1.93 1.95 6.57 2.46 3.02
海口五源河[15] 1.00 0.94 0.86 1.17 2.05 1.39 1.18
安徽宿州新汴河[16] 5.15 0.47 0.78 0.77 355 1.85 3.14
济南市东泺河[17] 2.88 2.30 1.46 2.21 1.92 2.10
赣江南昌段[18] 1.41 0.32 0.35 16.7 0.89 1.19
洙赵新河 1.68 1.33 1.72 1.22 3.20 1.20 1.62
万福河 1.14 1.17 1.66 1.05 3.02 1.16 1.42
东鱼河 1.39 1.23 1.52 1.11 2.53 1.18 1.43
Table 6  不同受污染水体沉积物重金属评价结果
Fig.3  不同重金属对潜在生态风险指数的贡献
流域 P Pmax Y
Cu Zn Ni Cr Cd Pb
洙赵新河 0.252 0.176 0.489 0.326 0.145 0.212 0.489 0.367
万福河 0.171 0.150 0.478 0.285 0.138 0.204 0.478 0.359
东鱼河 0.209 0.160 0.451 0.299 0.116 0.207 0.451 0.340
Table 7  三个流域水系沉积物重金属元素的P值和Y
Fig.4  研究区重金属含量分级示意
元素 Cu Zn Ni Cr Cd Pb
Cu 1
Zn 0.678** 1
Ni 0.567** 0.712** 1
Cr 0.478** 0.781** 0.739** 1
Cd 0.728** 0.655** 0.712** 0.493* 1
Pb 0.654** 0.682** 0.607** 0.629** 0.739** 1
Table 8  重金属含量间的相关系数
重金属 因子载荷
Cu 0.807
Zn 0.891
Ni 0.856
Cr 0.812
Cd 0.854
Pb 0.850
方差贡献率 71.49%
Table 9  沉积物中各重金属元素主成分分析结果
[1] Luoma S N. Bioavailability of trace metals to aquatic organisms—A review[J]. Science of the Total Environment, 1983, 28(1):1-22.
doi: 10.1016/S0048-9697(83)80004-7
[2] Sturm T W. Mobilization and fate of inorganic contaminants due to resuspension of cohesive sediments[J]. International Journal of Urology, 1996, 13(5):659-661.
doi: 10.1111/j.1442-2042.2006.01379.x
[3] Zhung Y, Allen H E, Fu G. Effect of aeration of sediment on cadmium binding[J]. Environmental Toxicology & Chemistry, 2010, 13(5):717-724.
[4] 王书锦, 刘云根, 王妍, 等. 洱海入湖河口湿地干湿季沉积物氮、磷、有机质垂向分布特征及污染风险差异性[J]. 环境科学, 2016, 37(12):4615-4625.
[4] Wang S J, Liu Y G, Wang Y, et al. Vertical distribution and pollution risk assessment of nitrogen,phosphorus,and organic matter in sediment of inflowing rivers of Erhai Lake estuarine wetland in wet and dry seasons[J]. Environmental Science, 2016, 37(12):4615-4625.
[5] 王莉君, 吴思麟. 南京黑臭河道底泥污染特性及评价[J]. 科学技术与工程, 2018, 18(3):117-122.
[5] Wang L J, Wu S L. Pollution characteristics and contamination assessment of sediment from black-odor rivers in Nanjing City[J]. Science Technology and Engineering, 2018, 18(3):117-122.
[6] 易文利. 宝鸡千河底泥营养盐及重金属风险评价[J]. 四川环境, 2018, 37(2):151-155.
[6] Yi W L. Risk assessment of heavy metals and nutrients in sediments of the Qianhe River in Baoji[J]. Sichuan Environment, 2018, 37(2):151-155.
[7] 邬明鹏. 聚苯并噁嗪界面性质的调控及其对水中重金属离子Cr(Ⅵ)的脱除性能研究[D]. 武汉: 华中农业大学, 2018.
[7] Wu M P. Regulation of interfacial properties of polybenzoxazine for removing heavy metal ion Cr(VI) from aqueous solution[D]. Wuhan: Huazhong Agricultural University, 2018.
[8] Tomlinson D L, Wilson J G, Harris C R, et al. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresunters, 1980(33):566-575.
[9] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:94-172.
[9] China National Eenvironmental Monitoring Center. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990:94-172.
[10] 贾英, 方明, 吴友军, 等. 上海河流沉积物重金属的污染特征与潜在生态风险[J]. 中国环境科学, 2013, 33(1):147-153.
[10] Jia Y, Fang M, Wu Y J, et al. Pollution characteristics and potential ecological risk of heavy metals in river sediments of Shanghai[J]. China Environmental Science, 2013, 33(1):147-153.
[11] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.
[11] Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science and Technology, 2008, 31(2):112-115.
[12] 马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6):1233-1241.
doi: 10.11821/dlyj020190632
[12] Ma J H, Han C X, Jiang Y L. Some problems in the application of potential ecological risk index[J]. Geographical Research, 2020, 39(6):1233-1241.
[13] Field L J, MacDonald D D, Norton S B, et al. Evaluating sediment chemistry and toxicity data using logistic regression modeling[J]. Environmental Toxicology and Chemistry, 1999, 18(6):1311-1322.
doi: 10.1002/etc.5620180634
[14] 丁婷婷, 杜士林, 王宏亮, 等. 嘉兴市河网重金属的污染特征及生态风险评价[J]. 环境化学, 2020, 39(2):500-511.
[14] Ding T T, Du S L, Wang H L, et al. Pollution characteristics and ecological risk assessment of heavy metals in Jiaxing River Network,Zhejiang Province,China[J]. Environmental Chemistry, 2020, 39(2):500-511.
[15] 王向辉, 张艺杰, 刘又华, 等. 海口市五源河底泥分析评价及资源化利用研究[J]. 海南师范大学学报:自然科学版, 2019, 32(2):221-226.
[15] Wang X H, Zhang Y J, Liu Y H, et al. Analysis,evaluation and resource utilization of sediments in Wuyuan River of Haikou City[J]. Journal of Hainan Normal University:Natural Science, 2019, 32(2):221-226.
[16] 余永琪, 冯松宝. 宿州新汴河底泥重金属分布特征及污染评价[J]. 西部资源, 2018(3):123-124,126.
[16] Yu Y Q, Feng S B. Distribution characteristics and pollution assessment of heavy metals in sediments from Xinbian River in Suzhou City[J]. Western Resources, 2018(3):123-124,126.
[17] 王冬莹, 庄涛, 李迎霞, 等. 济南市东泺河底泥及其雨水汇水区地表灰尘中重金属的污染特征研究[J]. 安全与环境学报, 2018, 18(4):1586-1592.
[17] Wang D Y, Zhuang T, Li Y X, et al. Heavy metal pollution features in the sediment and surface dust of the rain-water catchment area of Dongluo river in Jinan City[J]. Journal of Safety and Environment, 2018, 18(4):1586-1592.
[18] 石先罗, 章卫. 赣江南昌段沉积物重金属空间分布特征及风险评价[J]. 水利科技与经济, 2017, 23(9):1-5.
[18] Shi X L, Zhang W. Distribution characteristics and potential ecological risk assessment of heavy metals in the Nanchang section of Ganjiang River[J]. Water Conservancy Science and Technology and Economy, 2017, 23(9):1-5.
[19] 盛维康, 侯青叶, 杨忠芳, 等. 湘江水系沉积物重金属元素分布特征及风险评价[J]. 中国环境科学, 2019, 39(5):2230-2240.
[19] Sheng W K, Hou Q Y, Yang Z F, et al. Distribution characteristics and ecological risk assessment of heavy metals in sediments from Xiang River[J]. China Environmental Science, 2019, 39(5):2230-2240.
[20] 张伯镇, 雷沛, 潘延安, 等. 重庆主城区次级河流表层沉积物重金属污染特征及风险评价[J]. 环境科学学报, 2015, 35(7):2185-2192.
[20] Zhang B Z, Lei P, Pan Y A, et al. Pollution and ecological risk assessment of heavy metals in the surface sediments from the tributaries in the main urban districts,Chongqing City[J]. Acta Scientiae Circumstantiae, 2015, 35(7):2185-2192.
[21] 刘薇. 石油化工园区土壤土壤重金属空间分布特征、源解析及污染评价[D]. 乌鲁木齐: 新疆大学, 2017.
[21] Liu W. Spatial distribution characteristics,source analysis and pollution evaluation of heavy metals in soil of petrochemical[D]. Urumqi: Xinjiang University, 2017.
[22] 徐争启, 倪师军, 张成江, 等. 应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属[J]. 四川环境, 2004, 23(3):64-67.
[22] Xu Z Q, Ni S J, Zhang C J, et al. Assessment of heavy metals in sediments from Jinsha River in Panzhihua area by pollution load index[J]. Sichuan Environment, 2004, 23(3):64-67.
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[4] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[5] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[6] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[7] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[8] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[9] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[10] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[11] 范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
[12] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[13] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[14] 周文龙, 杨志忠, 张涛, 忙是材, 杨正坤. 黔南荔波县水稻—根系土系统中硒含量影响因素分析[J]. 物探与化探, 2022, 46(2): 502-510.
[15] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com