Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 761-771    DOI: 10.11720/wtyht.2022.1367
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
云南省安宁地区土壤重金属等元素生态地球化学调查与评价
范晨子1,2(), 袁继海1,2, 刘成海1,2, 郭威1,2, 孙冬阳1,2, 刘崴1,2, 赵九江1,2, 胡俊栋1,2, 赵令浩1,2
1.国家地质实验测试中心,北京 100037
2.中国地质调查局 微区与元素形态重点实验室,北京 100037
Eco-geochemical survey and evaluation of heavy metals and other elements in soil in Anning City, Yunnan Province
FAN Chen-Zi1,2(), YUAN Ji-Hai1,2, LIU Cheng-Hai1,2, GUO Wei1,2, SUN Dong-Yang1,2, LIU Wei1,2, ZHAO Jiu-Jiang1,2, HU Jun-Dong1,2, ZHAO Ling-Hao1,2
1. National Geological Experiment and Testing Center, Beijing 100037,China
2. Key Laboratory of Micro- and Element Forms Analysis of China Geological Survey, Beijing 100037, China
全文: PDF(9225 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

云南省安宁市是长江上游滇中经济发展和生态文明建设的重要地区。本文以2018~2020年度在安宁地区系统采集的表层土壤样品为研究对象,对研究区表层土壤重金属等元素含量特征和富集程度进行研究,利用地累积指数和潜在生态风险评价指数对土壤重金属的生态风险进行评价,并采用相关性和主成分分析其来源。结果表明,研究区土壤重金属Cr、Zn、As、Cd、Pb、Hg以及放射性元素U显著高于云南省土壤背景值,且变异程度较高,空间分布不均;重金属Cr地质异常累积程度最高,As、Cd和Hg潜在生态风险等级高,生态风险主要集中在磷矿采区及螳螂川流域钢铁厂、化工厂周边。研究区土壤中Cr、Ni、Cu可能更多地来源于成土母质;Cd、Pb、Zn和As高含量区受人为活动的影响较为显著;Hg可能存在复合污染源。本研究结果将为识别安宁地区土壤重金属的来源及当地土地资源安全管护提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范晨子
袁继海
刘成海
郭威
孙冬阳
刘崴
赵九江
胡俊栋
赵令浩
关键词 云南安宁土壤重金属生态地球化学    
Abstract

Anning City, Yunnan Province, China is an important area of economic development and ecological civilization construction in central Yunnan on the upper reaches of the Yangtze River. This study investigated the contents and enrichment degrees of elements including heavy metals in the surface soil samples that were systematically collected in the Anning area from 2018 to 2020. Then, this study assessed the ecological risks of heavy metals in the soil using the geoaccumulation index and the assessment indices of potential ecological risks and analyzed the sources of heavy metals using the methods of the Pearson correlation and principal component analysis. The results show that heavy metals Cr, Zn, As, Cd, Pb, Hg, and radioactive element U in the soil in the study area have significantly higher contents than corresponding background values of soil in Yunnan Province and show high-degree variation and uneven spatial distribution. Moreover, Cr has the highest accumulation degree of geological anomalies, elements As, Cd, and Hg have high potential ecological risks, and ecological risks are mainly concentrated in the phosphate mining area and the vicinity of steel plants and chemical plants in the Tanglangchuan basin. In terms of sources, Cr, Ni, and Cu may mainly originate from soil parent materials; areas with high Cd, Pb, Zn, and As contents are significantly affected by human activities, and Hg may have a composite pollution source. These results will provide a scientific basis for understanding the sources of heavy metals in soil in Anning City and for the management and protection of local land resources.

Key wordsAnning, Yunnan    soil    heavy metals    ecological geochemistry
收稿日期: 2021-07-01      修回日期: 2021-10-18      出版日期: 2022-06-20
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目(DD20190589);国家重点研发计划项目(2019YFC1805005);中国地质科学院基本科研业务费项目(CSJ201903);中国地质科学院基本科研业务费项目(CSJ202014);国家地质实验测试中心大型科研仪器开放共享后补助资金项目(GXBZ-2021-01)
作者简介: 范晨子(1982-),女,博士,副研究员,主要从事环境矿物学研究工作。Email: czfan2013@163.com
引用本文:   
范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
FAN Chen-Zi, YUAN Ji-Hai, LIU Cheng-Hai, GUO Wei, SUN Dong-Yang, LIU Wei, ZHAO Jiu-Jiang, HU Jun-Dong, ZHAO Ling-Hao. Eco-geochemical survey and evaluation of heavy metals and other elements in soil in Anning City, Yunnan Province. Geophysical and Geochemical Exploration, 2022, 46(3): 761-771.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1367      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/761
Figure 1  安宁市地质简图(依据1:20万安宁市地质图修改)[25]
特征参数 Cr Ni Cu Zn As Cd Pb Hg Th U Se F
最大值/10-6 514 351 1405 2910 977 67.03 3599 8.48 49.2 46.7 48.2 26700
最小值/10-6 5.29 4.79 2.43 10.6 0.95 6.12 0.003 0.91 0.94 0.01 1.74
平均值/10-6 87.6 40.2 42.8 183 25.3 0.567 124 0.167 15.9 7.74 0.41 230
中位值/10-6 84.0 36.7 31.7 127 20.7 0.25 67.2 0.099 15.6 6.35 0.27 81.0
标准偏差/10-6 47.0 23.6 59.9 195 28.8 1.81 173.5 0.271 6.58 5.14 1.57 419
变异系数 0.54 0.59 1.40 1.06 1.14 3.20 1.40 1.62 0.41 0.66 3.83 1.82
云南省土壤背景值[29]/10-6 65.2 42.5 46.3 89.7 18.4 0.218 40.6 0.058 16.05 4.53 0.423 592
全国土壤背景值[31]/10-6 57.3 24.9 20.7 68.0 9.60 0.079 23.5 0.038 12.4 2.72 0.207 453
K1 1.34 0.95 0.93 2.04 1.37 2.60 3.05 2.88 0.99 1.71 0.97 0.39
K2 1.53 1.62 2.07 2.69 2.63 7.18 5.27 4.39 1.28 2.85 1.98 0.51
Table 1  研究区表层土壤重金属元素、放射性元素及硒、氟含量统计(n=2 424)
Fig.2  安宁地区表层土壤重金属元素地球化学分布
Fig.3  安宁地区表层土壤U、Th、Se和F地球化学分布
重金属元素 各元素不同地累积指数级别样品数占比/%
Igeo<0 0≤Igeo<1 1≤Igeo<2 2≤Igeo<3 3≤Igeo<4 4≤Igeo<5 Igeo≥5
较弱 中等 较强 强烈 极强
Cr 63.52 4.21 7.61 4.63 3.51 2.48 14.0
Ni 90.84 1.03 2.10 1.57 0.05 0.05 3.55
Cu 90.80 3.34 1.98 0.74 0.70 0.54 1.90
Zn 54.81 19.19 12.01 4.17 2.60 1.49 5.74
As 71.16 5.41 8.02 4.26 2.23 1.40 7.52
Cd 56.37 23.79 9.22 3.25 2.59 0.92 3.86
Pb 50.04 32.66 8.34 2.73 1.82 0.83 3.59
Hg 45.16 29.03 12.99 5.09 0.91 1.36 5.46
Table 2  安宁地区土壤重金属地累积指数等级比例
重金属元素 不同潜在生态风险样品数占该区域样品总数百分比/%
轻微 中等 很强 极强
Cr 100 0 0 0 0
Ni 99.95 0.05 0 0 0
Cu 99.51 0.41 0.08 0 0
Zn 99.92 0.08 0 0 0
As 64.89 28.17 5.87 0.90 0.16
Cd 56.10 19.38 14.00 7.22 3.29
Pb 93.02 5.50 1.27 0.16 0.04
Hg 28.34 26.65 23.74 15.36 5.38
Table 3  安宁地区土壤重金属潜在生态风险指数等级比例
Fig.4  安宁地区表层土壤重金属潜在生态风险评价指数空间分布
元素 Cr Ni Cu Zn As Cd Pb Hg
Cr 1
Ni 0.546** 1
Cu 0.378** 0.464** 1
Zn -0.038 0.239** 0.152** 1
As 0.127** 0.155** 0.292** 0.363** 1
Cd -0.047* 0.068** 0.085** 0.445** 0.181** 1
Pb -0.035 0.105** 0.003 0.469** 0.463** 0.172** 1
Hg -0.059** 0.090** -0.018 0.247** 0.212** 0.112** 0.293** 1
Table 4  安宁地区土壤重金属Pearson相关系数
重金属
元素
成分矩阵 旋转后成分载荷矩阵
F1 F2 F1 F2
Cr 0.344 0.748 -0.133 0.813
Ni 0.575 0.598 0.142 0.817
Cu 0.510 0.569 0.104 0.757
Zn 0.719 -0.349 0.791 0.113
As 0.687 -0.133 0.644 0.275
Cd 0.456 -0.304 0.549 0.003
Pb 0.620 -0.435 0.758 -0.014
Hg 0.398 -0.352 0.527 -0.069
特征值 2.451 1.786
累积方差百分比/% 30.641 52.972
Table 5  安宁地区土壤重金属主成分分析矩阵
重金属元素 磷矿石 白云岩 炭质砂页岩 地壳丰度[41]
Cr 39.16 13.78 66.16 102
As 15.91 6.94 21.56 1.8
Cd 0.61 0.56 0.35 0.15
Hg 0.15 0.05 0.15 0.085
Pb 82.09 27.48 115.17 14
Ni 15.99 8.80 36.24 84
Cu 11.79 9.33 24.51 60
Zn 137.84 61.39 129.91 70
Table 6  安宁县街地区3种岩石类型中重金属元素含量
[1] 张国见, 宋小梅, 周忠浩, 等. 重庆市永川区表层土壤元素的分布特征[J]. 地球与环境, 2011, 39(4):498-502.
[1] Zhang G J, Song X M, Zhou Z H, et al. Research to chemical element distribution of surfical soil in Yongchuan, Chongqing[J]. Earth and Environment, 2011, 39(4): 498-502.
[2] 赵秀芳, 张永帅, 冯爱平, 等. 山东省安丘地区农业土壤重金属元素地球化学特及环境评价[J]. 物探与化探, 2020, 44(6):1446-1454.
[2] Zhao X F, Zhang Y S, Feng A P, et al. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1446-1454.
[3] 吴见珣, 杨赵, 杨涛明, 等. 云南某典型喀斯特区域农田土壤镉、砷污染特征及来源[J]. 环境科学导刊, 2020, 40(3):28-47.
[3] Wu J X, Yang Z, Yang T M, et al. Pollution characteristics and source analysis of cadmium and arsenic in farmland soil of a typical karst region in Yunnan[J]. Environmental Science Survey, 2020, 40(3): 28-47.
[4] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3):395-407.
[4] He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest of China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407.
[5] 徐国志, 董迎春, 邓金火, 等. 河北邯邢铁矿区矿山环境生态地球化学评价[J]. 地质通报, 2014, 33(11):1827-1835.
[5] Xu G Z, Dong Y C, Deng J H, et al. Geochemical evaluation of the ecologic environment of the Hanxing iron mining area, Hebei Province[J]. Geological Bulletin of China, 2014, 33(11): 1827-1835.
[6] 尹芳, 封凯, 尹翠景, 等. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 2021, 41 (11): 5217-5226.
[6] Yin F, Feng K, Yin C J, et al. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai province[J]. China Environmental Science, 2021, 41 (11): 5217-5226.
[7] 熊秋林, 肖红伟, 程朋根, 等. 北京表层土壤重金属污染分布及大气沉降贡献[J]. 生态环境学报, 2021, 30(4):816-824.
[7] Xiong Q L, Xiao H W, Cheng P G, et al. Pollution distribution of topsoil heavy metals in Beijing and its atmospheric deposition contribution[J]. Ecology and Environmental Sciences, 2021, 30(4): 816-824.
[8] 中华人民共和国环境保护部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[J]. 资源与人居环境, 2014(4):26-27.
[8] Ministry of Ecology and Environment of the People’s Republic of China. The Ministry of Environmental Protection and the Ministry of Land and Resources issued a national survey bulletin on soil pollution[J]. Resources and Habitant Environment, 2014(4): 26-27.
[9] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692.
[9] Chen N C, Zheng Y J, He X F, et al. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environmental Science, 2017, 36(9): 1689-1692.
[10] 曾思燕, 于昊辰, 马静, 等. 中国耕地表层土壤重金属污染状况评价及休耕空间权衡[J]. 土壤学报, 2022, 59(4). DOI: 10.11766/trxb202009270541
doi: 10.11766/trxb202009270541
[10] Zeng S Y, Yu H C, Ma J, et al. Identifying the status of heavy metal pollution of cultivated land for tradeoff spatial fallow in China[J]. Acta Pedologica Sinica, 2022, 59(4). DOI: 10.11766/trxb202009270541
doi: 10.11766/trxb202009270541
[11] Shi J, Li L, Pan G. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil[J]. Journal of Environmental Sciences, 2009, 21: 168-172.
doi: 10.1016/S1001-0742(08)62246-9
[12] 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5):917-927.
[12] Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927.
[13] 汪武萍, 王丽萍. 电感耦合等离子体原子发射光谱法测定磷矿中铬镉[J]. 云南化工, 2021, 48(2):84-89.
[13] Wang W P, Wang L P. Determination of chromium and cadmium in phosphate rock by inductively coupled plasma atomic emission spectrometry[J]. Yunnan Chemical Technology, 2021, 48(2): 84-89.
[14] 成瑾, 袁旭音, 章海燕, 等. 云贵地区磷矿分布区农田土壤重金属污染特征及对农产品质量的影响[J]. 生态与农村环境学报, 2021, 37(5):636-643.
[14] Cheng J, Yuan X Y, Zhang H Y, et al. Characteristics of heavy metal pollution in soils of Yunnan-Guizhou phosphate ore areas and their effects on quality of agricultural products[J]. Journal of Ecology and Rural Environment, 2021, 37(5): 636-643.
[15] 于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3):408-424.
[15] Yu F, Wang W, Yu Y, et al. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424.
[16] Müller G. Index of geo-accumulation in sediments of the Rhine River[J]. Geo Journal, 1969, 2: 108-118.
[17] Hankanson L. An ecological risk index for aquatic pollution control—A sediment ecological approach[J]. Water Research, 1980, 14(8): 975-1001.
doi: 10.1016/0043-1354(80)90143-8
[18] Nemerrow N L. Scientific stream pollution analysis[M]. Michigan: Scripta Book Company, 1974.
[19] Tomlinson D L, Wilson J G, Harris C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgolander Marine Research, 2019, 33: 566-575.
[20] Jin Y L, O’Connor D, Ok Y S, et al. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019, 124: 320-328.
doi: 10.1016/j.envint.2019.01.024
[21] U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. Risk assessment guidance for superfund (RAGS) part A[R]. 1989.
[22] 张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5):726-738.
[22] Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.
[23] 庞玲玲. 安宁市矿山地质环境评价信息系统研究[D]. 昆明: 云南大学, 2016.
[23] Pang L L. Research of mine geological environment evaluation information system of Anning[D]. Kunming: Yunnan University, 2016.
[24] 张丽, 段云龙, 字润祥, 等. 螳螂川河流磷、氟污染与防治对策分析研究[J]. 环境科学导刊, 2015, 34(6):31-35.
[24] Zhang L, Duan Y L, Zi R X, et al. Study on phosphorus and fluorine pollution and control in Tanglangchuan River[J]. Environmental Science Survey, 2015, 34(6): 31-35.
[25] 伍波, 郑庭, 宋尚鑫, 等. 云南省安宁市地质灾害详细调查报告[R]. 中国有色金属工业昆明勘察设计研究院, 2016.
[25] Wu B, Zheng T, Song S X, et al. Detailed investigation report on geological disasters in Anning City, Yunnan Province[R]. Kunming Prospecting Design Institute of China Nonferrous Metals Industry, 2016.
[26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14506.30—2010 硅酸盐岩石化学分析方法第30部分:44个元素量测定[S].
[26] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration. GB/T 14506.30—2010 Methods for chemical analysis of silicate rocks-Part 30: Determination of 44 elements[S].
[27] 中华人民共和国地质矿产部. DZG20.10—1990 1:5万区域地质调查及地球化学普查样品分析方法及质量管理指导性规程[S].
[27] Ministry of Geology and Mineral Resources of the People’s Republic of China. DZG20.10—1990 1:50000 regional geological survey and geochemical survey sample analysis methods and quality management guidelines[S].
[28] 中华人民共和国国土资源部. DZ/T 0258—2014 多目标区域地球化学调查规范 1:250 000[S].
[28] Ministry of Land and Resources of the People’s Republic of China. DZ/T 0258—2014 Multi-target area geochemical survey specification 1:250 000[S].
[29] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[29] China National Environmental Monitoring Centre. Chinese soil element background value[M]. Beijing: China Environmental Science Press, 1990.
[30] Tian K, Huang B, Xing Z, et al. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China[J]. Ecological Indicators, 2017, 72: 510-520.
doi: 10.1016/j.ecolind.2016.08.037
[31] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4):12-20.
[31] Wei F S, Chen J S, Wu Y Y, et al. Study on the background contents on 61 elements of soils in China[J]. Environmental Science, 1991, 12(4): 12-20.
doi: 10.1021/es60137a602
[32] 刘美美, 施泽明, 倪师军. 磷矿开采放射性污染及治理[J]. 矿物学报, 2013, 33(S2):703-704.
[32] Liu M M, Shi Z M, Ni S J. Radioactive pollution and treatment of phosphate ore mining[J]. Acta Mineralogica Sinica, 2013, 33(S2): 703-704.
[33] 闫双华, 马艳芳, 喻亦林. 云南伴生矿中的放射性与辐射环境监管[J]. 中国矿业, 2015, 24(2):141-145.
[33] Yan S H, Ma Y F, Yu Y L. Management of radiation and radiation environmental monitoring in Yunnan[J]. China Mining Magazine, 2015, 24(2): 141-145.
[34] 自然资源部中国地质调查局. DD2019—10 天然富硒土地划定与标识(试行)[S].
[34] China Geological Survey, Ministry of Natural Resources. DD2019—10 Delineation and identification of natural selenium-rich land (for trial implementation)[S].
[35] 周建平. 安宁县街磷矿床中低品位矿石地质特征及产出状态[J]. 云南化工, 2010, 37(6):56-60.
[35] Zhou J P. Geological features and output state of low-grade phosphate ore bed in Anning County street[J]. Yunnan Chemical Technology, 2010, 37(6): 56-60.
[36] 蒲勇. 磷矿伴生氟资源利用现状及氟资源利用率提升[J]. 硫磷设计与粉体工程, 2019(4):6-8.
[36] Pu Y. Current situation of utilizing fluorine resource in phosphate ore and improvement of fluorine utilization[J]. S P & BMH Related Engineering, 2019(4): 6-8.
[37] 杨天仪, 杨树云, 李建生, 等. 云南省多目标区域地球化学调查安宁—易门经济区成果报告[R]. 云南省地质调查院, 2013.
[37] Yang T Y, Yang S Y, Li J S, et al. Multi-target regional geochemical survey of Yunnan Province Anning-Yimen economic zone achievement Rreport[R]. Yunnan Provincial Geological Survey Institute, 2013.
[38] 刘军平, 李静, 段向东, 等. 滇中易门地区富硒土壤物质来源及其天然富硒野生菌初步研究[J]. 地质论评, 2020, 66(3):786-793.
[38] Liu J P, Li J, Duan X D, et al. Material sources of selenium-rich soil and its natural selenium-rich wild bacteria in Yimen area, central Yunnan[J]. Geological Review, 2020, 66(3): 786-793.
[39] Anne S, Alain M, Neville G G. Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectrospcopy[J]. American Mineralogist, 1996, 81: 864-873.
doi: 10.2138/am-1996-7-809
[40] 周文雅, 吕振福, 曹进成, 等. 中国磷矿大型资源基地开发利用现状分析[J]. 能源与环保, 2021, 43(1):56-60.
[40] Zhou W Y, Lyu Z F, Cao J C, et al. Analysis on status quo of development and utilization of large phosphate resources base in China[J]. China Energy and Environmental Protection, 2021, 43(1): 56-60.
[41] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[41] Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[4] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[5] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[6] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[7] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[8] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[9] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[10] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[11] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[12] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[13] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[14] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[15] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com