Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 148-157    DOI: 10.11720/wtyht.2025.2548
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于聚类分析的ModEM三维反演复杂地形网格剖分
胡士晖(), 闵刚(), 孙浥钦, 陈春江, 李春婷, 张志豪
成都理工大学 地球物理学院,四川 成都 610059
Gridding of complex terrains based on cluster analysis for ModEM 3D inversion
HU Shi-Hui(), MIN Gang(), SUN Yi-Qin, CHEN Chun-Jiang, LI Chun-Ting, ZHANG Zhi-Hao
College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(5917 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地形因素对大地电磁三维反演结果有显著影响,虽然前人在压制地形影响上已经取得了丰富的研究成果,但在复杂地形(高程变化大)的网格剖分上还存在设计网格复杂与数据高程点校正困难的问题。本文针对主流大地电磁三维反演模块ModEM,提出了一种基于无监督学习的快速带地形网格自动设计剖分新方法,核心内容包括K-means++算法和聚类效果评价,与不考虑地形的均匀分层、等比分层方法相比具有以下优点:①基于聚类的分层方法生成的地形网格具有更高的地形近似度,将地形网格与实际地形之间的平均误差降低了25%;②一定程度上避免了数据高程地形改正的匹配计算;③不仅可用于快速的设计地形网格,其分层特点还可以被参考用于其他建模软件的网格剖分。利用该方法演示了某矿区复杂地形高程数据剖分的全部流程,生成了更能代表实际地形特征的电阻率结构模型,并基于该模型获得了更加精细的三维反演结果。理论和实际应用说明该方法极大地提高了网格剖分的地形适应性,对于压制大地电磁三维反演地形影响具有重要的意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡士晖
闵刚
孙浥钦
陈春江
李春婷
张志豪
关键词 音频大地电磁法ModEM地形网格剖分K-means++    
Abstract

The topographic factor significantly influences the 3D inversion results of magnetotelluric data. Despite extensive research results previously obtained in suppressing topographic effects, the gridding of complex terrains (with significant elevation changes) is still challenged by grid design complexity and difficulty in correcting data elevation points. Based on the mainstream 3D inversion module ModEM for magnetotelluric data, this study proposed a novel method for rapid automatic grid design and partitioning of terrains based on unsupervised learning, primarily involving the K-means++ algorithm and the assessment of clustering effects. Compared to the uniform and equal proportion-based hierarchical methods ignoring the topographic factor, the proposed method shows the following advantages: (1) The terrain grid generated by the clustering-based hierarchical method manifested higher terrain approximation, reducing the average error between the terrain grid and the actual terrain by 25%; (2) The matching calculation for terrain correction based on the digital elevation model was somewhat avoided; (3) The rapid design of terrain grids can be achieved, and the hierarchical characteristics can be referenced for gridding in other modeling software. The proposed method was employed to demonstrate the whole process of partitioning the elevation data of a complex terrain in a mining area, generating a resistivity structure model more representative of the actual terrain characteristics. Based on this model, finer-scale 3D inversion results were obtained. Theoretical and practical applications illustrate that the proposed method can significantly improve the topographic adaptability of gridding, holding critical significance for suppressing topographic effects on the 3D inversion of magnetotelluric data.

Key wordsaudio-frequency magnetotellurics    ModEM    terrain gridding    K-means++
收稿日期: 2023-12-19      修回日期: 2024-03-07      出版日期: 2025-02-20
ZTFLH:  P631  
基金资助:深地国家科技重大专项“深部高温地热能探深评价及开发利用示范”(SQ2024AAA060115);国家自然科学基金重点项目“基于深度学习的青藏高源深部电性结构模型及其动力学特征”(41930112)
通讯作者: 闵刚(1983-),男,博士(后),副教授,主要从事地球探测与信息技术、构造地球物理等方面的教学与科研工作。Email:mg-s1983827@163.com
作者简介: 胡士晖(1999-),男,成都理工大学在读硕士研究生。Email:shihuihu_cdut@163.com
引用本文:   
胡士晖, 闵刚, 孙浥钦, 陈春江, 李春婷, 张志豪. 基于聚类分析的ModEM三维反演复杂地形网格剖分[J]. 物探与化探, 2025, 49(1): 148-157.
HU Shi-Hui, MIN Gang, SUN Yi-Qin, CHEN Chun-Jiang, LI Chun-Ting, ZHANG Zhi-Hao. Gridding of complex terrains based on cluster analysis for ModEM 3D inversion. Geophysical and Geochemical Exploration, 2025, 49(1): 148-157.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2548      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/148
Fig.1  聚类建模对接MODEM流程
Fig.2  高程数据来源位置分布(红色星状点代表音频大地电磁GPS测点,绿色圆点代表路线上的GPS高程数据,黑色方形点代表ASTER GDEM V2的DEM数据,红色框代表研究区域,蓝色框代表扩展网格区域)
Fig.3  实际地形网格高程色块
Fig.4  间隙值评估优选簇数量
Fig.5  DB-index评估优选簇数量
Fig.6  轮廓系数评估优选簇数量
网格高程层号 聚类方法
分层位置/m
均匀方法
分层位置/m
等比方法
分层位置/m
1 2137.5 2160.5 2164.9
2 2098.2 2135.3 2147.6
3 2073.4 2110.1 2128.6
4 2052.9 2084.9 2107.7
5 2036.1 2059.7 2084.7
6 2020.7 2034.4 2059.4
7 2005.5 2009.2 2031.5
8 1989.9 1984.0 2000.9
9 1970.4 1958.8 1967.2
10 1950.1 1933.6 1930.1
11 1927.7 1908.4 1889.4
Table 1  地形划分模型分层结果
Fig.7  聚类网格高程色块
Fig.8  均匀网格高程色块
Fig.9  等比网格高程色块
网格高程
划分方法
误差平均值/m 误差均方差/m 确定系数
聚类划分 4.773 33.672 0.984
均匀划分 6.424 54.265 0.979
等比划分 7.547 77.776 0.970
Table 2  网格高程误差分析
Fig.10  正演模型
a—三维模型;b—模型切片(其中上方红色区域代表空气地形,蓝色块为低阻体,红色块为高阻体,图中点代表网格中心分布位置)
Fig.11  反演结果
a—聚类剖分方式;b—平均剖分方式
[1] 李思平, 刘彩云, 熊杰, 等. 基于改进残差网络的大地电磁反演研究[J]. 物探与化探, 2023, 47(6):1508-1518.
[1] Li S P, Liu C Y, Xiong J, et al. Magnetotelluric inversion based on an improved residual network[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1508-1518.
[2] Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
[3] Kelbert A, Meqbel N, Egbert G D, et al. ModEM:A modular system for inversion of electromagnetic geophysical data[J]. Computers & Geosciences, 2014,66:40-53.
[4] Yang B, Zhang A Q, Zhang S, et al. Three-dimensional audio-frequency magnetotelluric imaging of Akebasitao granitic intrusions in Western Junggar,NW China[J]. Journal of Applied Geophysics, 2016,135:288-296.
[5] Min G, Yuan H L, Wang X B, et al. Crustal and upper mantle electrical structure and uplift mechanism of the Liupanshan orogenic belt in the NE Tibetan Plateau[J]. Tectonophysics, 2023,853:229799.
[6] 顾观文, 吴文鹂, 梁萌. 大地电磁三维正、反演多核并行计算的设计与实现[J]. 物探与化探, 2014, 38(3):601-606.
[6] Gu G W, Wu W L, Liang M. The multi-core paralleled strategies and efficiency analysis of 3D magnetotelluric forward modeling and inversion[J]. Geophysical and Geochemical Exploration, 2014, 38(3):601-606.
[7] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4):994-1001.
[7] Xu D Q, Li M. Fine inversion of the broadband magnetotelluric data of the Erlian Basin:A case study of the Mandulatu area[J]. Geophysical and Geochemical Exploration, 2023, 47(4):994-1001.
[8] 顾观文, 李桐林. 基于矢量有限元的带地形大地电磁三维反演研究[J]. 地球物理学报, 2020, 63(6):2449-2465.
doi: 10.6038/cjg2020N0321
[8] Gu G W, Li T L. Three-dimensional magnetotelluric inversion with surface topography based on the vector finite element method[J]. Chinese Journal of Geophysics, 2020, 63(6):2449-2465.
[9] Xiong B, Luo T Y, Chen L W, et al. Influence of complex topography on magnetotelluric-observed data using three-dimensional numerical simulation:A case from Guangxi area,China[J]. Applied Geophysics, 2020, 17(4):601-615.
[10] 何帅, 杨炳南, 阮帅, 等. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3):618-627.
[10] He S, Yang B N, Ruan S, et al. Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area,Guizhou using the 3D AMT forward modeling and inversion technologies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):618-627.
[11] 程正璞, 郭淑君, 魏强, 等. AMT地形影响与带地形反演研究[J]. 物探与化探, 2023, 47(1):146-155.
[11] Cheng Z P, Guo S J, Wei Q, et al. Audiomagnetotelluric data:Influence of terrain and the inversion considering terrain[J]. Geophysical and Geochemical Exploration, 2023, 47(1):146-155.
[12] 秦策, 刘幸飞, 王绪本, 等. 基于自适应有限元正演的大地电磁法三维反演算法研究[J]. 地球物理学报, 2022, 65(6):2311-2325.
[12] Qin C, Liu X F, Wang X B, et al. Three-dimensional inversion of magnetotelluric based on adaptive finite element method[J]. Chinese Journal of Geophysics, 2022, 65(6):2311-2325.
[13] Koldan J, Puzyrev V, de la Puente J, et al. Algebraic multigrid preconditioning within parallel finite-element solvers for 3D electromagnetic modelling problems in geophysics[J]. Geophysical Journal International, 2014, 197(3):1442-1458.
[14] Zhdanov M S, Smith R B, Gribenko A, et al. Three-dimensional inversion of large-scale EarthScope magnetotelluric data based on the integral equation method:Geoelectrical imaging of the Yellowstone conductive mantle plume[J]. Geophysical Research Letters, 2011, 38(8):L08037.
[15] Krieger L, Peacock J R. MTpy:A Python toolbox for magnetotellurics[J]. Computers & Geosciences, 2014,72:167-175.
[16] Kirkby A, Zhang F, Peacock J, et al. The MTPy software package for magnetotelluric data analysis and visualisation[J]. Journal of Open Source Software, 2019, 4(37):1358.
[17] Shlykov A. Electromagnetic processor 1.4 user manual[R]. Saint Petersburg State University St.Peterburg Russia, 2022.
[18] 陈军林, 彭润民, 李帅值, 等. 利用自组织特征映射神经网络和K-means聚类算法挖掘区域化探数据中的地质信息[J]. 物探与化探, 2017, 41(5):919-927.
[18] Chen J L, Peng R M, Li S Z, et al. Self-organizing feature map neural network and K-means algorithm as a data excavation tool for obtaining geological information from regional geochemical exploration data[J]. Geophysical and Geochemical Exploration, 2017, 41(5):919-927.
[19] Beretta L, Cohen-Addad V, Lattanzi S, et al. Multi-swap k-Means++[J]. Eprint Arxiv, 2024.
[20] Choo D, Grunau C, Portmann J, et al. International Conference on K-means++:Few more steps yield constant approximation[C]// 37th et al.International Conference on Machine Learning, 2020.
[21] 喻思羽, 李少华, 段太忠, 等. 基于局部各向异性的非平稳多点地质统计学算法[J]. 物探与化探, 2017, 41(2):262-269.
[21] Yu S Y, Li S H, Duan T Z, et al. Non-stationary multiple-point geostatistics algorithm base on local anisotropy[J]. Geophysical and Geochemical Exploration, 2017, 41(2):262-269.
[22] 刘凯, 戴慧敏, 刘国栋, 等. 基于主成分聚类法的典型黑土区土壤地球化学分类[J]. 物探与化探, 2022, 46(5):1132-1140.
[22] Liu K, Dai H M, Liu G D, et al. Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1132-1140.
[23] Lloyd S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2):129-137.
[24] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14,63.
doi: 10.3778/j.issn.1002-8331.1908-0347
[24] Yang J C, Zhao C. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14,63.
doi: 10.3778/j.issn.1002-8331.1908-0347
[25] 周爱武, 于亚飞. K-Means聚类算法的研究[J]. 计算机技术与发展, 2011, 21(2):62-65.
[25] Zhou A W, Yu Y F. The research about clustering algorithm of K-means[J]. Computer Technology and Development, 2011, 21(2):62-65.
[26] Sinaga K P, Yang M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020,8:80716-80727.
[27] Bury M, Schwiegelshohn C. Random projections for k-means:Maintaining coresets beyond merge & reduce[J]. Eprint Arxiv, 2015.
[28] Cohen M B, Elder S, Musco C, et al. Dimensionality reduction for k-means clustering and low rank approximation[C]// Proceeding of the Forty-Serenth Annual, 2002.
[29] Grunau C, Rozhoň V. Adapting k-means algorithms for outliers[C]// International Conference on Machine Learning,ACM Symposium on Theory of Computing(STOC’15),2015.
[30] Arthur D, Vassilvitskii S. K-means++ the advantages of careful seeding[C]// Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007.
[31] Yoder J Priebe C E. Semi-supervised K-means++[J]. Journal of Statistical Computation and Simulation, 2017, 87(13):2597-608.
[32] Rousseeuw P J. Silhouettes:A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987,20:53-65.
[33] Han J, Pei J, Tong H. Data mining:concepts and techniques[M]. San Francision: Morgan Kaufmann, 2022.
[34] Davies D L, Bouldin D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2):224-7.
pmid: 21868852
[35] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 2001, 63(2):411-423.
[36] Amidror I. Scattered data interpolation methods for electronic imaging systems:A survey[J]. Journal of Electronic Imaging, 2002,11:157-176.
[1] 张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
[2] 韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
[3] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[4] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[5] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[6] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[7] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[8] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[9] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[10] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[11] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[12] 陆泽峰. 高山峡谷地区桥址区岩溶发育特征地球物理勘察[J]. 物探与化探, 2021, 45(1): 252-256.
[13] 区小毅, 黎海龙, 杨富强, 莫亚军, 陆怀成. 音频大地电磁法在广西北海市海水入侵调查中的应用[J]. 物探与化探, 2020, 44(1): 66-73.
[14] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[15] 康敏, 康健, 秦建增. 音频大地电磁法对隐伏构造的识别与应用——以河南省郑州市老鸦陈周边为例[J]. 物探与化探, 2018, 42(1): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com