Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1223-1231    DOI: 10.11720/wtyht.2024.1145
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
安徽滁河断裂带温泉水地球化学特征及其形成机理
王国建1(), 胡文慧1, 李广之1, 朱怀平1, 胡斌1, 肖鹏飞2, 张英3
1.中国石化石油勘探开发研究院 无锡石油地质研究所,江苏 无锡 214126
2.中国石化石油物探技术研究院,江苏 南京 211100
3.中国石化石油勘探开发研究院,北京 100026
Geochemical characteristics and formation mechanism of thermal spring water in the Chuhe fault zone in Anhui Province
WANG Guo-Jian1(), HU Wen-Hui1, LI Guang-Zhi1, ZHU Huai-Ping1, HU Bin1, XIAO Peng-Fei2, ZHANG Ying3
1. Wuxi Institute of Petroleum Geology, Petroleum Exploration and Production Research Institute, SINOPEC, Wuxi 214126, China
2. Geophysical Research Institute Co., Ltd., SINOPEC, Nanjing 211100, China
3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100026, China
全文: PDF(3297 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

滁河断裂带上发育了多个与构造活动有关的温泉,除南端的半汤温泉外,其余温泉大多热能利用不甚理想,给当地相关产业的发展带来了影响,因此有必要选取滁河断裂带上的典型温泉,从水化学特征及其形成机理上进行研究,以期为后续温泉群地热资源的合理利用及勘查方法的选择提供科学依据。据此,以滁河断裂带半汤、昭关和香泉的温泉为研究对象,分别采集了温泉水、冷井水、地表水样品,总计9个样品,完成了样品中阴阳离子、常量和微量元素25个指标的组分测试,开展了样品的氢氧同位素数值测定。通过25个指标实测数据的分析,以及氢氧同位素示踪地热水来源及受控因素研究,结果表明:3个地区的温泉水都偏向于CaSO4型,均与地下水和围岩发生相互作用密切相关;半汤和昭关地区各自的温泉水、冷井水及地表水具有同源特征,地热水主要由当地降水、地表水进行直接补给,香泉地区温泉水、地表水和冷井水同源特征较弱,地下冷水径流与地热水来源不同,需要在温泉主控因素判断中引起注意;研究区玉髓温标的计算结果与采出地表热水温度接近,而石英温标的计算结果与深部的热储温度相近。研究结果初步揭示了滁河断裂带温泉水的地球化学特征,温泉水的补给关系及水岩相互作用状况,提出了该区有效的地球化学温标,有助于加深滁河断裂带温泉机理及调控因素的认识,在后续温泉功能提升和地热资源开发利用方面具有实际应用价值和研究方法示范。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王国建
胡文慧
李广之
朱怀平
胡斌
肖鹏飞
张英
关键词 滁河断裂带温泉水化学形成机理热储温度    
Abstract

Several thermal springs associated with tectonic activity occur along the Chuhe fault zone. Except for the Bantang thermal spring at the southern end, other springs along the fault zone exhibit unideal utilization of thermal energy. This affects the development of local industries. Therefore, it is necessary to delve into the geochemical characteristics and formation mechanism of typical thermal springs along the Chuhe fault zone. The purpose is to provide scientific evidence for the rational utilization and exploration methods of geothermal resources in the thermal spring groups in the future. Therefore, this study investigated thermal springs in the Bantang, Zhaoguan, and Xiangquan areas along the Chuhe fault zone, where nine samples of thermal spring water, cold well water, and surface water were collected individually. For these samples, the composition tests of 25 indices, including anions, cations, and major and trace elements, were tested, and the hydrogen and oxygen isotope values were determined. The analyses of the 25 measured indices, along with the investigation of the geothermal water source and controlling factors through hydrogen and oxygen isotope tracing, indicate that the thermal spring water in the three areas tends to be of the CaSO4 type and is all closely related to the interactions between groundwater and surrounding rocks. The thermal spring water, cold well water, and surface water in Bantang and Zhaoguan show consanguinity, with geothermal water being directly recharged with local precipitation and surface water. In contrast, the thermal spring water, surface water, and cold well water in the Xiangquan area show weaker consanguinity, indicating different sources for the underground cold water runoff and geothermal water. This should be noted when determining the primary factors controlling the thermal spring in this area. The temperatures calculated using a chalcedony geothermometer were close to the temperatures of the hot water recovered on the surface. In contrast, the temperatures calculated using a quartz geothermometer approached the temperatures of deep geothermal reservoirs. The results of this study preliminarily reveal the geochemical characteristics, recharge relationships, and water-rock interactions of thermal spring water in the Chuhe fault zone and propose effective geochemical geothermometers for the study area. These contribute to deeper insights into the mechanisms and controlling factors of the thermal springs along the fault zone, as well as providing practical value and a methodological model for enhancing thermal spring functionality and geothermal resource exploitation and utilization in the future.

Key wordsChuhe fault zone    thermal spring    hydrochemistry    formation mechanism    geothermal reservoir temperature
收稿日期: 2023-03-30      修回日期: 2024-05-11      出版日期: 2024-10-20
ZTFLH:  P632  
基金资助:国家重点研发计划课题(2019YFC0604902);国家自然科学基金项目(41872126);国家自然科学基金项目(U2003101);中国石化科技部项目(P14044)
作者简介: 王国建(1972-),男,研究员,主要从事油气、地热地球化学勘探,石油实验地质研究工作。Email:wanggj.syky@sinopec.com
引用本文:   
王国建, 胡文慧, 李广之, 朱怀平, 胡斌, 肖鹏飞, 张英. 安徽滁河断裂带温泉水地球化学特征及其形成机理[J]. 物探与化探, 2024, 48(5): 1223-1231.
WANG Guo-Jian, HU Wen-Hui, LI Guang-Zhi, ZHU Huai-Ping, HU Bin, XIAO Peng-Fei, ZHANG Ying. Geochemical characteristics and formation mechanism of thermal spring water in the Chuhe fault zone in Anhui Province. Geophysical and Geochemical Exploration, 2024, 48(5): 1223-1231.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1145      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1223
Fig.1  滁河断裂带温泉分布[2]
Fig.2  滁河断裂带部分地质简图及水样点分布(据文献[9-10]修改)
样品号 样品来源 Ca Mg Na K Cl- HCO 3 - SO 4 2 - Al As B Ba Cr
BT-1 半汤地表水 31.5 10.51 23.58 3.22 9.67 97.52 23.46 96 1.03 0 0.27 2.64
BT-2 半汤冷井水 34.57 13.65 2.77 72.2 23.55 170.95 72.44 26 11.19 0.02 0.06 5.22
BT-3 半汤温泉水 420.88 91.47 23.49 8.63 3.37 259.29 1074.61 89 1.87 0.03 0.04 7.86
ZG-1 昭关地表水 33.32 11.75 73.11 7.98 9.28 79.27 35.04 2090 0.02 0.08 19.61
ZG-2 昭关冷井水 102.87 43.13 100.05 132.16 42.27 385.41 82.31 850 0.03 0.13 19.99
ZG-3 昭关温泉水 330.84 105.45 76.97 18.79 7.24 281.91 984.89 600 0.05 0.04 13.97
XQ-1 香泉地表水 61.02 6.75 67.23 4.77 9.8 144.29 39.51 740 0.09 0.2 15.78
XQ-2 香泉冷井水 195.93 35.57 152.12 15.82 143.68 461 236.24 740 0.08 0.12 18.54
XQ-3 香泉温泉水 337.26 63.18 56.12 11.83 7.88 187.36 864.3 340 0.06 0.08 7.97
样品号 样品来源 Cu Fe Li Mn Mo Ni Pb SiO2 Sr U V Zn pH
BT-1 半汤地表水 1.38 0.04 0.07 0 0.41 1.35 0.1 0.68 0.09 0.95 0.32 233.45 7.1
BT-2 半汤冷井水 0.9 0.02 3.23 0 1.92 <0.02 29.78 0.12 0.15 5.64 226.05 6.8
BT-3 半汤温泉水 2.71 0.02 0.19 0.01 0.7 10.04 <0.02 54.15 10.57 0.23 0.65 558.55 6.9
ZG-1 昭关地表水 3.06 1.5 0 0.05 0.6 9.15 3.15 9.51 0.15 0.36 4.02 177.67 6.9
ZG-2 昭关冷井水 1.71 0.25 0.01 0.05 0.78 8.78 1.94 25.11 0.55 2.34 9.2 271.03 6.7
ZG-3 昭关温泉水 1.7 0.09 0.33 0.01 1.01 16.83 1.37 32.01 6.7 0.36 1.21 122.97 6.9
XQ-1 香泉地表水 1.52 0.2 0 0.02 1.19 6.55 1.6 2.51 0.23 0.95 2.78 779.84 6.8
XQ-2 香泉冷井水 1.77 0.3 0.04 1.7 4.5 12.92 1.6 27.28 5.23 1.13 5.85 175.82 6.7
XQ-3 香泉温泉水 5.6 0.37 0.17 0.01 2.16 17.67 1.31 40.84 10.06 0.31 1.35 138.24 7
Table 1  滁河断裂带半汤、香泉、昭关地区温泉水、冷井水、地表水水化学组成特征
样号 样品来源 电中性
水平/%
阴离子/
(meq·L-1)
阳离子/
(meq·L-1)
总离子/
(meq·L-1)
总溶解浓度/
(meq·L-1)
总硬度/
(mg·L-1)
碱度/
(mg·L-1)
计算密度/
(g·cm-1)
SAR(钠
吸附比)
主水型
BT-1 半汤地表水 20.54 2.36 3.58 5.94 200.91 121.84 1.60 1.000 0.93 Ca(HCO3)2
BT-2 半汤冷井水 3.62 4.98 5.35 10.33 423.61 142.42 2.80 1.000 0.10 KHCO3
BT-3 半汤温泉水 39.07 26.73 61.02 87.75 2139.2 1426.5 4.25 1.002 0.27 CaSO4
ZG-1 昭关地表水 46.38 2.29 6.26 8.55 261.85 131.47 1.30 1.000 2.77 NaHCO3
ZG-2 昭关冷井水 28.38 9.23 16.54 25.76 915.23 434.14 6.32 1.001 2.09 KHCO3
ZG-3 昭关温泉水 7.22 25.35 29.29 54.65 1845.97 1259.36 4.62 1.002 0.94 CaSO4
XQ-1 香泉地表水 32.15 3.47 6.76 10.24 337.96 180.04 2.36 1.000 2.18 NaHCO3
XQ-2 香泉冷井水 9.49 16.54 20.00 36.54 1275.75 635.22 7.56 1.001 2.63 Ca(HCO3)2
XQ-3 香泉温泉水 8.13 21.3 25.07 46.38 1579.65 1101.43 3.07 1.002 0.74 CaSO4
Table 2  研究区半汤、香泉、昭关地区水化学参数计算
Fig.3  半汤、昭关、 香泉地区天然水化学Piper图解
地区 样品名称 δ18O(Vsmow)/‰ δD(Vsmow)/‰
巢湖半汤 地表水 -2.7 -36
冷井水 -5.9 -53
温泉水 -6.3 -66
含山昭关 地表水 -7.1 -35
冷井水 -8.8 -51
温泉水 -10.9 -61
和县香泉 地表水 -6.9 -43
冷井水 -5.5 -54
温泉水 -11.1 -63
Table 3  半汤、昭关、香泉地区各种水样氢氧同位素值
Fig.4  半汤、昭关、香泉地区不同水体ρ(Na)-ρ(K)-ρ(Mg)图解
Fig.5  半汤、昭关、香泉地区温泉水矿物饱和指数特征
计算方法 地热温标/℃
巢湖半汤 和县香泉 含山昭关
石英1(无
蒸汽闪失)
105.57 92.60 82.10
石英2(完
整蒸汽闪失)
105.80 94.58 85.41
石英3(混合
型石英温标)
106.02 93.14 82.65
玉髓 75.92 62.03 50.90
Table 4  常规地热温标试算结果
Fig.6  滁河断裂带半汤、昭关、香泉地区温泉水、冷井水、地表水氢氧同位素
[1] 苏蓉. 滁河断裂特征研究及其意义[D]. 合肥: 合肥工业大学, 2010.
[1] Su R. Study on characteristics of Chuhe fault and its significance[D]. Hefei: Hefei University of Technology, 2010.
[2] 刘飞, 汪龙虎, 洪江生. 浅论安徽巢湖半汤地热田成因及径流通道问题[J]. 地质学刊, 2008, 32(3):172-178.
[2] Liu F, Wang L H, Hong J S. On origin of Bantang geothermal field and its run-off passage in Chaohu area,Anhui[J]. Journal of Geology, 2008, 32(3):172-178.
doi: 10.1086/623077
[3] 宁金野. 合肥温泉之乡半汤地热成因模式及其外围地热前景探讨[J]. 安徽地质, 2013, 23(3):227-230.
[3] Ning J Y. Genetic model of the geothermal energy in Bantang,a spa town in Hefei and the exploration potential in the periphery[J]. Geology of Anhui, 2013, 23(3):227-230.
[4] 张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3):190-198.
doi: 10.13745/j.esf.2017.03.017
[4] Zhang Y, Feng J Y, He Z L, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3):190-198.
[5] 王国建, 宁丽荣, 李广之, 等. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析[J]. 地质论评, 2021, 67(1):117-128.
[5] Wang G J, Ning L R, Li G Z, et al. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system[J]. Geological Review, 2021, 67(1):117-128.
[6] 陶士振, 刘德良. 郯庐断裂带及邻区地热场特征、温泉形成因素及气体组成[J]. 天然气工业, 2000, 20(6):42-47.
[6] Tao S Z, Liu D L. Gerothermal field characteristics of tanlu fault zone and its neighbouring regions,thermal spring genesis and its gas composition[J]. Natural Gas Industry, 2000, 20(6):42-47.
[7] 安徽省地质矿产局. 安徽省区域地质志[M]. 北京: 地质出版社,1987.
[7] Bureau of Geology and Mineral Resources of Anhui Province. Regional geology of Anhui Province[M]. Beijing: Geological Publishing House,1987.
[8] 宋传中, 朱光, 王道轩, 等. 苏皖境内滁河断裂的演化与大地构造背景[J]. 中国区域地质, 2000, 19(4):367-374.
[8] Song C Z, Zhu G, Wang D X, et al. Evolution of the Chuhe fault in Jiangsu and Anhui and tectonic setting[J]. Geological Bulletin of China, 2000, 19(4):367-374.
[9] 郭鹏, 韩竹军, 周本刚, 等. 安徽巢湖—铜陵地区中强地震发生的构造标志[J]. 地震地质, 2018, 40(4):832-849.
doi: 10.3969/j.issn.0253-4967.2018.04.008
[9] Guo P, Han Z J, Zhou B G, et al. Tectonic indications of occurrence of moderate-to-strong earthquakes in Chaohu-Tongling area,Anhui Province[J]. Seismology and Geology, 2018, 40(4):832-849.
[10] 隋丽嫒, 周训, 李状, 等. 安徽滁河断裂带温泉的水化学和同位素特征及成因分析[J]. 地质论评, 2022, 68(3):981-992.
[10] Sui L A, Zhou X, Li Z, et al. Hydrochemical and isotopic characteristics and genesis of hot springs in the Chuhe fault zone,Anhui[J]. Geological Review, 2022, 68(3):981-992.
[11] 周迅, 叶永红. 地下水舒卡列夫水化学分类法的改进及应用——以福建省晋江市地下水为例[J]. 资源调查与环境, 2014(4):299-304.
[11] Zhou X, Ye Y H. Improvement and application of Schukalev groundwater hydrochemical classification method:Taking groundwaters in Jinjiang city,Fujian Province as an example[J]. Resources Survey & Environment, 2014(4):299-304.
[12] 高宗军, 陈晨. 基于库尔洛夫式和舒卡列夫分类原则的水化学分类表示方法[J]. 地下水, 2018, 40(4):6-11.
[12] Gao Z J, Chen C. The classification method of water chemical types based on the principle of Kurllov's Formula and Shoka Lev classification[J]. Ground Water, 2018, 40(4):6-11.
[13] 陈新攀. 地下水舒卡列夫水化学分类法的一些改进[J]. 地下水, 2022, 44(2):25-28.
[13] Chen X P. Improvement of Schukalev groundwater hydro-chemical classification method[J]. Ground Water, 2022, 44(2):25-28.
[14] 袁星芳, 王敬, 霍光, 等. 胶东半岛洪水岚汤温泉水化学特征与成因分析[J]. 地质与勘探, 2020, 56(2):427-437.
[14] Yuan X F, Wang J, Huo G, et al. Hydrochemistry and genesis of the hongshuilantang hot spring in the Jiaodong peninsula[J]. Geology and Exploration, 2020, 56(2):427-437.
[15] 刘成龙, 王广才, 史浙明, 等. 云南硫磺洞温泉水文地球化学特征和成因分析[J]. 地震研究, 2020, 43(2):278-286.
[15] Liu C L, Wang G C, Shi Z M, et al. Hydrogeochemical characteristic and formation of the Liuhuangdong spring in Yunnan Province[J]. Journal of Seismological Research, 2020, 43(2):278-286.
[16] Giggenbach W F. Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2749-2765.
[17] Parkhurst D L, Appelo C A. User's guide to PHREEQC ( Version 2 ) — A computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical Calculations[R]. Water Resources Investigation Report,1999.
[18] Arnorsson S. Application of the silica geothermometer in low temperature hydrothermal areasin Iceland[J]. American Journal of Science, 1975, 275(7):763-784.
[19] Fournier R O, Truesdell A H. Geochemical indicators of subsurface temperature—part 2,Estimation of temperature and fraction of hot water mixed with cold water[J]. Journal of Research the U.S.Geological Survey, 1974, 2( 3):263-270.
[20] Fournier R O, Potter II R W. A revised and expanded silica (quartz) geothermometer[J]. Geothermal Resources Council Bulletin, 1982,11:3-12.
[21] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806.
[21] Zheng S H, Hou F G, Ni B L. Study on hydrogen and oxygen stable isotopes of atmospheric precipitation in China[J]. Science Bulletin, 1983, 28(13):801-806.
[22] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703.
pmid: 17814749
[23] Krabbenhoft D P, Bowser C J, Anderson M P, et al. Estimating groundwater exchange with lakes:1.The stable isotope mass balance method[J]. Water Resources Research, 1990, 26(10):2445-2453.
[24] 包为民, 胡海英, 王涛, 等. 蒸发皿中水面蒸发氢氧同位素分馏的实验研究[J]. 水科学进展, 2008, 19(6):780-785.
[24] Bao W M, Hu H Y, Wang T, et al. Experimental study on the fractionation mechanism of hydrogen and oxygen stable isotopes in evaporation from water surface of evaporation pans[J]. Advances in Water Science, 2008, 19(6):780-785.
[25] 罗维均, 王世杰, 刘秀明. 中国大气降水δ18O区域特征及其对古气候研究的意义[J]. 地球与环境, 2008, 36(1):47-55.
[25] Luo W J, Wang S J, Liu X M. Regional characteristics of modern precipitation δ18O values and implications for paleoclimate research in China[J]. Earth and Environment, 2008, 36(1):47-55.
[26] 刘进达, 赵迎昌, 刘恩凯, 等. 中国大气降水稳定同位素时—空分布规律探讨[J]. 勘察科学技术, 1997(3):34-39.
[26] Liu J D, Zhao Y C, Liu E K, et al. Discussion on the stable isotope time-space distribution law of China atmospheric precipitation[J]. Site Investigation Science and Technology, 1997(3):34-39.
[27] 钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005.
[27] Qian H, Ma Z Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2005.
[1] 扈胜涛, 张祥恒, 韩明智, 汤世凯, 于林弘, 李金鹏, 张杰, 赵国鹏, 白莹. 烟台市某化工集聚区浅层地下水化学特征分析[J]. 物探与化探, 2024, 48(4): 1157-1164.
[2] 石晓今, 李嫄嫄, 黄贤龙. 天津滨海新区深部地热流体水文地球化学特征[J]. 物探与化探, 2022, 46(2): 316-322.
[3] 申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.
[4] 牛俊强, 范威, 郭昆. 武汉城市圈岩溶热储水化学特征及水—岩作用研究[J]. 物探与化探, 2019, 43(4): 741-748.
[5] 李林果, 李百祥. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34.
[6] 孙彬彬, 张学君, 刘占元, 周国华, 张必敏, 陈亚东. 地电化学异常形成机理初探[J]. 物探与化探, 2015, 39(6): 1183-1187.
[7] 胡博文, 陈立, 么红超, 张发旺, 张瑾, 赵淼. 综合物探在煤巷道断裂施工段富水性判别中的应用[J]. 物探与化探, 2015, 39(4): 867-871.
[8] 黄卓雄, 杨兴沐. 高阻异常蕴含裂隙温泉的实例与思考[J]. 物探与化探, 2015, 39(1): 64-68.
[9] 夏中广. 河南下汤温泉与车村—鲁山断裂的关系及电测深法在其勘查中的应用[J]. 物探与化探, 2015, 39(1): 95-99.
[10] 张秋, 谭志伟, 张作祥, 赵兰, 刘凤霞. 贝尔凹陷水文地球化学特征与油气藏的关系[J]. 物探与化探, 2011, 35(1): 37-41.
[11] 王国建, 唐俊红, 范明, 卢丽, 黄欣. 油气微渗漏中的随水迁移机制[J]. 物探与化探, 2010, 34(3): 294-297.
[12] 马生明, 朱立新, 周国华, 张金炳. 高山峡谷区快速评价找矿靶区的化探方法技术[J]. 物探与化探, 2002, 26(3): 185-191.
[13] 李福林, 张保祥. 水化学与电法在海水入侵监测中的应用[J]. 物探与化探, 1999, 23(5): 376-379.
[14] 蒋敬业. 影响水化学找金发展的因素及其进一步研究[J]. 物探与化探, 1998, 22(4): 255-261.
[15] 马生明, 任天祥, 蒋瑞金, 汪明启. 吉南玄武岩覆盖区水化学异常查证──以两处金矿化的发现为例[J]. 物探与化探, 1996, 20(6): 429-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com