Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 88-97    DOI: 10.11720/wtyht.2024.1084
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
华南火成岩区深层地热勘探地震处理关键技术
郑浩(), 崔月, 许璐, 齐鹏
中石化石油物探技术研究院有限公司,江苏 南京 211103
A key seismic processing technique for deep geothermal exploration in igneous province in southern China
ZHENG Hao(), CUI Yue, XU Lu, QI Peng
SINOPEC Geophysical Research Institute Co.,Ltd.,Nanjing 211103,China
全文: PDF(15267 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

华南火成岩发育区是我国重要的地热资源区,具备中高温地热的储藏条件,地热资源丰富,但深层地热资源勘探难度大,基于重、磁、电的勘探方法对地层结构、热储边界及隐伏断裂的热储空间展布特征刻画不足。因此,本文利用三维地震勘探资料,开展面向深层地热勘探的地震关键处理技术研究,形成具有识别深层地热构造的处理技术流程。首先,通过面向深层热储的精细预处理技术解决深层低信噪比问题,做好数据基础工作;在此基础上,采用断控精细速度建模技术建立高精度速度模型;最后结合保低频逆时偏移技术实现深层热储高精度成像,改善成像质量,提高热储空间、高陡边界的刻画精度。实际资料测试验证了该技术流程的有效性与实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑浩
崔月
许璐
齐鹏
关键词 深层地热勘探热储边界预处理速度建模高精度成像    
Abstract

Southern China's igneous province,as a significant geothermal resource area in China,possesses abundant geothermal resources owing to its favorable accumulation conditions for medium-to-high temperature geothermal resources.However,gravity-magnetic-magnetotelluric exploration methods fail to sufficiently characterize the formation structures,geothermal reservoir boundaries,and the spatial distribution of geothermal reservoirs within the concealed fault zones,posing challenges in exploring deep geothermal resources.Hence,this study delved into the key seismic processing techniques for deep geothermal exploration based on 3D seismic exploration data,establishing a targeted processing flow.First,the problem of low signal-to-noise ratios in deep layers was solved through fine-scale preprocessing for deep geothermal reservoirs,laying a solid data foundation.Then,a high-precision velocity model was built via fault-guided tomography velocity modeling.Finally,the high-precision imaging of deep geothermal reservoirs was achieved using the amplitude-preserving low-frequency reverse-time migration technology,thus improving the imaging quality and the characterization accuracy of geothermal reservoir spaces and high-steep boundaries.Field data-based testing verified the validity and practicability of the processing flow.

Key wordsdeep geothermal exploration    geothermal reservoir boundary    preprocessing    velocity modeling    high-precision imaging
收稿日期: 2023-04-03      修回日期: 2023-11-28      出版日期: 2024-02-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目课题(2019YFC0604902)
作者简介: 郑浩(1991-),男,硕士,副研究员,主要从事地球物理反演与Q值建模、智能化地震资料处理等研究工作。Email:zhenghao.swty@sinopec.com
引用本文:   
郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
ZHENG Hao, CUI Yue, XU Lu, QI Peng. A key seismic processing technique for deep geothermal exploration in igneous province in southern China. Geophysical and Geochemical Exploration, 2024, 48(1): 88-97.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1084      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/88
Fig.1  华南火成岩地区多类型噪声发育
Fig.2  噪声压制流程
Fig.3  频散面波压制前(a)与压制后(b)效果对比
Fig.4  异常振幅噪声压制前(a)与压制后(b)效果对比
Fig.5  非规则相干噪声压制前(a)与压制后(b)效果对比
Fig.6  叠前五维规则化前(a)、后(b)效果对比
Fig.7  断控层析速度建模技术流程
Fig.8  速度更新迭代结果对比
a—初始模型深度域速度;b—无约束大尺度层析速度;c—构造约束小尺度层析速度
Fig.9  迭代过程成像道集对比
a—初始模型深度域成像道集;b—无约束大尺度层析成像道集;c—构造约束小尺度层析成像道集
Fig.10  初始模型与更新后模型对应的PSDM剖面对比
a—图8a速度模型对应的PSDM成像剖面;b—图8c最终速度模型对应的PSDM成像剖面
Fig.11  克希霍夫偏移(a)与保低频RTM偏移(b)效果对比
Fig.12  面向复杂岩性和构造条件下的深层地热地震资料处理关键技术流程(图中黄色位置为关键性技术)
Fig.13  前期处理结果(a)与本期处理结果(b)基底边界成像效果对比
Fig.14  前期处理结果(a)与本期处理结果(b)基底内幕成像效果对比
[1] 滕吉文, 司芗, 庄庆祥, 等. 福建陆缘壳幔异常结构与深部热储潜能分析[J]. 科学技术与工程, 2017, 17(17):6-38.
[1] Teng J W, Si X, Zhuang Q X, et al. Abnormal structure of crust and mantle and analysis of deep thermal potential in Fujian continental margin[J]. Science Technology and Engineering, 2017, 17(17):6-38.
[2] 张健, 王蓓羽, 唐显春, 等. 华南陆缘高热流区的壳幔温度结构与动力学背景[J]. 地球物理学报, 2018, 61(10):3917-3932.
doi: 10.6038/cjg2018L0448
[2] Zhang J, Wang B Y, Tang X C, et al. Temperature structure and dynamic background of crust and mantle beneath the high heat flow area of the South China continental margin[J]. Chinese Journal of Geophysics, 2018, 61(10):3917-3932.
[3] 王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
[3] Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of Huangniqiao area,Ninghua County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):576-582.
[4] 范艳霞, 李海龙, 张军龙, 等. 东南沿海黄沙洞地热田地应力与控热构造研究[J]. 地球物理学报, 2022, 65(10):3944-3961.
[4] Fan Y X, Li H L, Zhang J L, et al. Research on the in situ stress state and the geothermal-controlling structure of the Huangshadong Geothermal Field in the Southeast Coast of China[J]. Chinese Journal of Geophysics, 2022, 65(10):3944-3961.
[5] Panea I, Negut A, Mocanu V. The relationship between the deep faults and the geothermal structures identified on the Moesian Platform territory[C]// SEG Technical Program Expanded Abstracts 2011.Society of Exploration Geophysicists, 2011.
[6] Saad O M, Chen Y K. Deep denoising autoencoder for seismic random noise attenuation[J]. Geophysics, 2020, 85(4):V367-V376.
doi: 10.1190/geo2019-0468.1
[7] Shan W J, Wang Y Q, Lu W K. ECA-UNet:Denoise seismic data by learning from traditional method[C]// First International Meeting for Applied Geoscience & Energy Expanded Abstracts.Denver,CO and virtual.Society of Exploration Geophysicists, 2021.
[8] 石战战, 庞溯, 王元君, 等. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6):1444-1453.
[8] Shi Z Z, Pang S, Wang Y J, et al. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1444-1453.
[9] 崔亚彤, 王胜侯, 蔡忠贤. 基于快速自适应非局部均值滤波的地震随机噪声压制方法[J]. 物探与化探, 2022, 46(5):1187-1195.
[9] Cui Y T, Wang S H, Cai Z X. Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1187-1195.
[10] 杜耀斌, 曾庆才. 塔里木盆地河南探区地震资料处理方法研究[J]. 新疆石油地质, 2006, 27(1):53-55.
[10] Du Y B, Zeng Q C. Study of the methods for seismic data processing in Henan prospecting area in Tarim Basin[J]. Xinjiang Petroleum Geology, 2006, 27(1):53-55.
[11] 徐颖, 刘晨, 吕秋玲, 等. 多域组合去噪技术在塔中奥陶系低信噪比资料处理中的应用[J]. 石油物探, 2015, 54(2):172-179,196.
doi: 10.3969/j.issn.1000-1441.2015.02.008
[11] Xu Y, Liu C, Lyu Q L, et al. Application of multi-domain composite denoising technology for the processing of Ordovician low SNR seismic data in Tazhong Area[J]. Geophysical Prospecting for Petroleum, 2015, 54(2):172-179,196.
doi: 10.3969/j.issn.1000-1441.2015.02.008
[12] 王立歆, 李海英, 李弘, 等. 复杂地质条件下超深层碳酸盐岩断控缝洞体成像及预测技术[J]. 石油物探, 2022, 61(5):865-875.
doi: 10.3969/j.issn.1000-1441.2022.05.011
[12] Wang L X, Li H Y, Li H, et al. Imaging and prediction technology of fault-karst reservoirs in ultra-deep carbonate rocks under complex geological conditions[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):865-875.
doi: 10.3969/j.issn.1000-1441.2022.05.011
[13] Cai J X, Zheng H. Gaussian beam velocity tomography based on azimuth-opening angle domain common imaging gathers[J]. Journal of Geophysics and Engineering, 2019, 16(5):992-1008.
doi: 10.1093/jge/gxz061
[14] Karastathis V K, Papoulia J, Di Fiore B, et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece,using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research, 2011, 206(3/4):106-120.
doi: 10.1016/j.jvolgeores.2011.06.008
[15] Toksoz M N. Geothermal reservoir characterization using passive seismic tomography:A case history[C]// Istanbul: International Geophysical Conference and Oil & Gas Exhibition,Society of Exploration Geophysicists and the Chamber of Geophysical Engineers of Turkey, 2012:1-4.
[16] 张在金, 陈可洋, 范兴才, 等. 井控与构造约束条件下的网格层析速度建模技术及应用[J]. 石油物探, 2020, 59(2):208-217.
doi: 10.3969/j.issn.1000-1441.2020.02.006
[16] Zhang Z J, Chen K Y, Fan X C, et al. Seismic wave velocity modelling through grid tomography inversion constrained by well logging and structural modeling[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):208-217.
doi: 10.3969/j.issn.1000-1441.2020.02.006
[17] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2):372-380.
[17] Zheng H, Cai J X, Wang J B. Gaussian beam tomography with structure-filtering and its applications[J]. Geophysical and Geochemical Exploration, 2020, 44(2):372-380.
[18] 郑浩, 刘俊辰, 万城程. 基于断裂属性约束的深度域层析速度建模技术[J]. 石油物探, 2021, 60(4):556-564,573.
doi: 10.3969/j.issn.1000-1441.2021.04.004
[18] Zheng H, Liu J C, Wan C C. Fault-constrained velocity tomography in the depth domain[J]. Geophysical Prospecting for Petroleum, 2021, 60(4):556-564,573.
doi: 10.3969/j.issn.1000-1441.2021.04.004
[19] 刘守伟, 王华忠, 陈生昌, 等. 三维逆时偏移GPU/CPU机群实现方案研究[J]. 地球物理学报, 2013, 56(10):3487-3496.
[19] Liu S W, Wang H Z, Chen S C, et al. Implementation strategy of 3D reverse time migration on GPU/CPU clusters[J]. Chinese Journal of Geophysics, 2013, 56(10):3487-3496.
[20] 张慧宇, 王立歆, 孔祥宁, 等. 适于大规模数据的逆时偏移实现方案[J]. 物探与化探, 2015, 39(5):978-984.
[20] Zhang H Y, Wang L X, Kong X N, et al. The implementation scheme of reverse-time migration for mass seismic data[J]. Geophysical and Geochemical Exploration, 2015, 39(5):978-984.
[21] 刘立民, 刘定进, 李博. 起伏地表谱元逆时偏移方法[J]. 石油物探, 2021, 60(2):312-322.
doi: 10.3969/j.issn.1000-1441.2021.02.012
[21] Liu L M, Liu D J, Li B. Reverse time migration for irregular topography based on spectral element method[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):312-322.
[1] 张敏, 邓盾, 李三福, 史文英, 张兴岩, 支玲. 东方1-1构造底辟模糊区OBN资料关键处理技术及应用[J]. 物探与化探, 2023, 47(6): 1456-1466.
[2] 田坤, 王常波, 刘立彬, 张建中. 基于深度加权的三维地震斜率层析成像[J]. 物探与化探, 2022, 46(6): 1485-1491.
[3] 齐鹏. 深层膏盐体局部层析速度建模[J]. 物探与化探, 2022, 46(4): 982-987.
[4] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
[5] 黄威, 贲放, 李军峰, 殷长春, 胥值礼, 刘俊杰. 航空瞬变电磁数据背景场去除研究[J]. 物探与化探, 2020, 44(3): 672-676.
[6] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[7] 黄威, 贲放, 吴珊, 孙思源, 廖桂香, 西永在. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019, 43(4): 892-898.
[8] 彭海龙, 赫建伟, 任婷, 邓盾, 江凡, 王瑞敏, 张文祥. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3): 537-544.
[9] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[10] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
[11] 孙春岩, 宋腾, 贺会策, 张志冰, 李攀峰, 赵浩, 李吉鹏. 智控型化探样品预处理系统及其在海洋天然气水合物勘查中的应用[J]. 物探与化探, 2015, 39(5): 954-961.
[12] 白雪, 李振春, 张凯, 宋翔宇, 杨国权, 尚江伟. 基于井数据约束的高精度层析速度反演[J]. 物探与化探, 2015, 39(4): 805-811.
[13] 李燕. 盐丘构造成像速度建模及逆时偏移关键参数优选[J]. 物探与化探, 2015, 39(3): 537-544.
[14] 段云卿, 覃天, 杨文军, 高海燕. 叠前偏移方法在辽河油田大民屯地区的应用[J]. 物探与化探, 2008, 32(4): 438-441.
[15] 杜庆丰, 管志宁, 何朝明. 瞬变电磁数据预处理方法探讨[J]. 物探与化探, 2006, 30(1): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com