Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 734-745    DOI: 10.11720/wtyht.2025.1412
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
小道距线型密集台阵城市地下空间探测研究与应用
蒋伟龙1(), 尹奇峰2(), 余森林3, 张华1, 邱修权1, 黄伟鸿1, 鲍兴悦1, 丁明岩4
1.东华理工大学 铀资源探采与核遥感全国重点实验室,江西 南昌 330013
2.南京工业大学 交通运输工程学院,江苏 南京 211816
3.南京市测绘勘察研究院股份有限公司,江苏 南京 210019
4.中国石油天然气股份有限公司 新疆油田分公司,新疆 克拉玛依 834000
Investigation and application of closely spaced linear dense arrays in detecting urban underground spaces
JIANG Wei-Long1(), YIN Qi-Feng2(), YU Sen-Lin3, ZHANG Hua1, QIU Xiu-Quan1, HUANG Wei-Hong1, BAO Xing-Yue1, DING Ming-Yan4
1. National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing,East China University of Technology,Nanchang 330013,China
2. College of Transportation Engineering,Nanjing University of Technology,Nanjing 211816,China
3. Nanjing Surveying and Mapping Institute Co.,Ltd.,Nanjing 210019,China
4. Xinjiang Oilfield Company,PetroChina Company Limited,Karamay 834000,China
全文: PDF(9958 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

快速便捷且更可靠地获得人口密集地区强干扰环境下的城市浅层地下结构,对现阶段城市地下空间数字透明化及其安全开发具有非常重要的意义。随着节点地震仪的发展,被动源地震成像方法在不同尺度的地下结构成像中得到了广泛的应用,为城市地下空间浅层地下结构探测提供了成功示范。受城市道路及狭窄空间特殊条件的限制,在众多被动源台阵布置方式中直线型密集台阵具有较高的适应性。我们在已知地下埋设管道异常体试验区域分别设计1 m、3 m和5 m三种不同道间距的线型台阵布置方式进行1 h噪声数据持续观测,利用扩展空间自相关方法(ESPAC)计算面波频散数据,并进行横波速度反演,与此同时对原始数据、频散曲线以及反演横波速度剖面进行综合分析,以此提供被动源地震在城市地下空间尺度探测中,小道距线型密集台阵观测系统参数选择的科学认知和依据。最终,根据试验成果,我们选择科学合理的观测系统应用于实际城市地下空间建设探测工程中,获得施工区域完整的地层结构以及破碎带等导水构造。因此,本研究表明在城市地下空间探测尺度,选择小道距线型密集台阵具有更好的勘探分辨率和勘探精度,并且该技术在人文干扰严重环境区域同样具备较好的适应性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋伟龙
尹奇峰
余森林
张华
邱修权
黄伟鸿
鲍兴悦
丁明岩
关键词 被动源面波小道距线型密集台阵城市地下空间频散曲线横波速度剖面    
Abstract

Rapid,convenient,and reliable acquisition of shallow urban underground structures in densely populated areas with intense anthropogenic noise is significant for promoting the digital transparency and safe development of urban underground spaces.With the advancement of nodal seismometers,passive-source seismic imaging methods have been widely applied to image underground structures at various scales,successfully demonstrating the detection of shallow underground structures in urban underground spaces.Under the constraints imposed by urban roads and narrow spaces,linear dense arrays show high adaptability among various passive-source array deployment patterns.In a test area with known underground pipeline anomalies,this study designed three linear array arrangement patterns with spacings of 1 m,3 m,and 5 m for 1 h continuous observation of noise data.This study employed the extended spatial autocorrelation(ESPAC) method to extract surface-wave frequency dispersion data for shear-wave velocity inversion.Moreover,by comprehensively analyzing the raw data,frequency dispersion curves,and the shear-wave velocity profile obtained through inversion,this study provided a scientific understanding and basis for the parameter selection of the closely spaced linear dense array observation system for passive-source seismic detection of urban underground spaces.Finally,based on the experimental results,this study selected a scientifically reasonable observation system for detection in a real-world urban underground space construction and exploration project,revealing the complete stratigraphic structure and water-conducting structures like fracture zones at the construction area.Therefore,closely spaced linear dense arrays can yield higher resolution and accuracy in detecting urban underground spaces,showing higher adaptability in areas with severe anthropogenic interference.

Key wordspassive-source surface wave    closely spaced linear dense array    urban underground space    frequency dispersion curve    shear-wave velocity profile
收稿日期: 2024-12-21      修回日期: 2025-03-15      出版日期: 2025-06-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41807296);安徽省重点研究与开发计划项目(2022m07020008);安徽省高等学校自然科学研究项目重点项目(KJ2021A0084);合肥市博士后研究人员科研资助项目;中国博士后科学基金面上项目(276665);江西省自然科学基金重点项目(20242BAB26051)
通讯作者: 尹奇峰(1986-),男,副教授,研究方向为背景噪声与微地震联合成像、滑坡监测与城市地下空间。Email:qifengyin@ustc.edu.cn
作者简介: 蒋伟龙(2001-),男,硕士研究生,主要研究方向为背景噪声成像。Email:13319016838@163.com
引用本文:   
蒋伟龙, 尹奇峰, 余森林, 张华, 邱修权, 黄伟鸿, 鲍兴悦, 丁明岩. 小道距线型密集台阵城市地下空间探测研究与应用[J]. 物探与化探, 2025, 49(3): 734-745.
JIANG Wei-Long, YIN Qi-Feng, YU Sen-Lin, ZHANG Hua, QIU Xiu-Quan, HUANG Wei-Hong, BAO Xing-Yue, DING Ming-Yan. Investigation and application of closely spaced linear dense arrays in detecting urban underground spaces. Geophysical and Geochemical Exploration, 2025, 49(3): 734-745.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1412      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/734
Fig.1  实验区概况
Fig.2  三条测线示意
线号 道间距/m 仪器数量 测线总长度/m
L1 1 60 59
L2 3 36 105
L3 5 29 140
Table 1  测线信息
Fig.3  小型排列台阵
Fig.4  3条测线不同仪器的频散谱
a、c、e—分别为L1、L2、L3测线在15 m处频散谱;b、d、f—分别为L1、L2、L3测线在30 m处频散谱
Fig.5  被动源面波子台阵频散曲线
a—15 m位置处L1~L3频散曲线;b—30 m位置处L1~L3频散曲线;c—45 m位置处L1~L3频散曲线;d—50 m位置处L1~L3频散曲线
Fig.6  初始、拟合模型与拟合曲线
a、b、c—分别为33 m处L1、L2、L3测线模型与拟合曲线;d—25 m处L3测线模型与拟合曲线
Fig.7  横波速度剖面与钻孔
a、b、c—分别为L1,L2,L3号测线横波速度剖面
Fig.8  台阵布设方式及排列滚动方式
Fig.9  被动源地震成像目前完成布设测线位置
Fig.10  剖面典型频散谱
Fig.11  L5~L8测线横波速度剖面
Fig.12  L9~L12测线横波速度剖面
Fig.13  钻孔剖面
[1] 程光华, 苏晶文, 李采, 等. 城市地下空间探测与安全利用战略构想[J]. 华东地质, 2019, 40(3):226-233.
[1] Cheng G H, Su J W, Li C, et al. Strategic thinking of urban underground space exploration and safe utilization[J]. East China Geology, 2019, 40(3):226-233.
[2] 陈颙, 陈棋福, 黄静, 等. 减轻地震灾害[J]. 地震学报, 2003, 25(6):621-629,675.
[2] Chen Y, Chen Q F, Huang J, et al. Reduction of earthquake disasters[J]. Acta Seismologica Sinica, 2003, 25(6):621-629,675.
[3] 王栎, 陈颙, 于大勇, 等. 未来城市地下空间探测的关键技术——大陆气枪震源[J]. 地球物理学报, 2022, 65(12):4750-4759.
[3] Wang L, Chen Y, Yu D Y, et al. Seismic airgun the key technology of future urban underground space exploration[J]. Chinese Journal of Geophysics, 2022, 65(12):4750-4759.
[4] 何继善, 李帝铨, 胡艳芳, 等. 城市强干扰环境地下空间探测技术与应用[J]. 工程地球物理学报, 2022, 19(5):559-567.
[4] He J S, Li D Q, Hu Y F, et al. Geophysical exploration methods for strong interference urban underground space[J]. Chinese Journal of Engineering Geophysics, 2022, 19(5):559-567.
[5] 王成善, 周成虎, 彭建兵, 等. 论新时代我国城市地下空间高质量开发和可持续利用[J]. 地学前缘, 2019, 26(3):1-8.
doi: 10.13745/j.esf.sf.2018.9.2
[5] Wang C S, Zhou C H, Peng J B, et al. A discussion on high-quality development and sustainable utilization of China’s urban underground space in the new era[J]. Earth Science Frontiers, 2019, 26(3):1-8.
[6] 杨文采, 瞿辰, 任浩然, 等. 青藏高原地壳地震纵波速度的层析成像[J]. 地质论评, 2019, 65(1):2-14.
[6] Yang W C, Qu C, Ren H R, et al. Crustal P-wave seismic tomography of the Qinghai-Xizang (Tibetan) plateau[J]. Geological Review, 2019, 65(1):2-14.
[7] 刘铁华, 刘铁, 程光华, 等. 复杂城市环境下地球物理勘探技术研究进展[J]. 工程地球物理学报, 2020, 17(6):711-720.
[7] Liu T H, Liu T, Cheng G H, et al. Research progress of geophysical exploration technology in complex urban environment[J]. Chinese Journal of Engineering Geophysics, 2020, 17(6):711-720.
[8] 葛如冰. 高密度电阻率法在城市地下目的物探测中的应用[J]. 物探与化探, 2011, 35(1):136-139.
[8] Ge R B. The application of high-density resistivity to detecting urban underground objects[J]. Geophysical and Geochemical Exploration, 2011, 35(1):136-139.
[9] 李巧灵, 雷晓东, 李晨, 等. 微动测深法探测厚覆盖层结构——以北京城市副中心为例[J]. 地球物理学进展, 2019, 34(4):1635-1643.
[9] Li Q L, Lei X D, Li C, et al. Exploring thick overburden structure by microtremor survey:A case study in the subsidiary administrative center[J]. Progress in Geophysics, 2019, 34(4):1635-1643.
[10] 梁锋, 高磊, 王志辉, 等. 利用背景噪声层析成像研究济南浅层横波速度结构[J]. 地学前缘, 2019, 26(3):129-139.
doi: 10.13745/j.esf.sf.2019.5.18
[10] Liang F, Gao L, Wang Z H, et al. Study of the shear wave velocity structure of underground shallow layer of Jinan by ambient noise tomography[J]. Earth Science Frontiers, 2019, 26(3):129-139.
doi: 10.13745/j.esf.sf.2019.5.18
[11] 王爽, 孙新蕾, 秦加岭, 等. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构[J]. 地球物理学报, 2018, 61(2):593-603.
doi: 10.6038/cjg2018L0434
[11] Wang S, Sun X L, Qin J L, et al. Fine fault structure of Xinfengjiang water reservoir area from high-frequency ambient noise tomography[J]. Chinese Journal of Geophysics, 2018, 61(2):593-603.
[12] Mordret A, Roux P, Boué P, et al. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array[J]. Geophysical Journal International, 2019, 216(2):896-905.
[13] Gu N, Wang K D, Gao J, et al. Shallow crustal structure of the tanlu fault zone near Chao Lake in Eastern China by direct surface wave tomography from local dense array ambient noise analysis[J]. Pure and Applied Geophysics, 2019, 176(3):1193-1206.
[14] 刘国峰, 刘语, 孟小红, 等. 被动源面波和体波成像在内蒙古浅覆盖区勘探应用[J]. 地球物理学报, 2021, 64(3):937-948.
doi: 10.6038/cjg2021O0064
[14] Liu G F, Liu Y, Meng X H, et al. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia[J]. Chinese Journal of Geophysics, 2021, 64(3):937-948.
[15] 曾求, 储日升, 盛敏汉, 等. 基于地震背景噪声的四川威远地区浅层速度结构成像研究[J]. 地球物理学报, 2020, 63(3):944-955.
doi: 10.6038/cjg2020N0177
[15] Zeng Q, Chu R S, Sheng M H, et al. Seismic ambient noise tomography for shallow velocity structures beneath Weiyuan,Sichuan[J]. Chinese Journal of Geophysics, 2020, 63(3):944-955.
[16] 田原, 瞿辰, 王伟涛, 等. 四川盐源盆地短周期密集台阵背景噪声分布特征分析[J]. 地球物理学报, 2020, 63(6):2248-2261.
doi: 10.6038/cjg2020N0063
[16] Tian Y, Qu C, Wang W T, et al. Characteristics of the ambient noise distribution recorded by the dense seismic array in the Yanyuan Basin,Sichuan Province[J]. Chinese Journal of Geophysics, 2020, 63(6):2248-2261.
[17] Shao X H, Yao H J, et al. Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning-Xichang segment of the Anninghe fault zone,SW China[J]. Earth and Planetary Physics, 2022,6.
[18] Xu H R, Luo Y H, Chen C, et al. 3D shallow structures in the Baogutu area,Karamay,determined by eikonal tomography of short-period ambient noise surface waves[J]. Journal of Applied Geophysics, 2016,129:101-110.
[19] Duvall T L Jr, Jeffferies S M, Harvey J W, et al. Time-distance helioseismology[J]. Nature, 1993, 362(6419):430-432.
[20] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35(3):415-456.
[21] Asten M W. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods[J]. Geophysics, 2006, 71(6):V153-V162.
[22] Ling S, Okada H. An extended use of the spatial autocorrelation method for the estimation of geological structures using microtremors[C]// Nagoya:Proceedings of the 89th SEGJ Conference, Society of Exploration Geophysicists of Japan,1993:44-48.
[23] 傅庆凯. 直线型台阵微动技术在隧道勘察中的应用研究[J]. 物探化探计算技术, 2023, 45(6):757-765.
[23] Fu Q K. Research and application of engineering geological microtremor survey technology in tunnel investigation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(6):757-765.
[24] 高级, 张海江, 查华胜, 等. 台阵和噪声源分布对微动成像的影响及其在盐矿溶腔探测中的应用[J]. 地球物理学报, 2023, 66(6):2489-2506.
[24] Gao J, Zhang H J, Zha H S, et al. The effect of different arrays and noise source distribution on microtremor imaging and its application in solute salt mine cavity detection[J]. Chinese Journal of Geophysics, 2023, 66(6):2489-2506.
[25] 郭瑛霞, 张丽峰, 胡维云, 等. 地震背景噪声成像研究综述[J]. 地震地磁观测与研究, 2023, 44(2):18-26.
[25] Guo Y X, Zhang L F, Hu W Y, et al. A review of ambient noise tomography[J]. Seismological and Geomagnetic Observation and Research, 2023, 44(2):18-26.
[26] 敬嘉良, 陈国雄, 程飞, 等. 超短时线性台阵背景噪声成像技术在浅层地质结构探测中的应用[J]. 地球物理学进展, 2024, 39(1):63-76.
[26] Jing J L, Chen G X, Cheng F, et al. Application of ultra short time linear array ambient noise imaging technology to detect shallow geological structures[J]. Progress in Geophysics, 2024, 39(1):63-76.
[27] 秦长春, 王国顺, 李婧. 主动源面波采集装置改进及在地铁施工勘察中的应用[J]. 物探与化探, 2024, 48(1):264-271.
[27] Qin C C, Wang G S, Li J. Improvement in active-source surface wave acquisition device and its application in subway construction exploration[J]. Geophysical and Geochemical Exploration, 2024, 48(1):264-271.
[28] 李红星, 李涛, 章晨望, 等. 浅地表面波频散曲线组合勘探方法[J]. 科学技术与工程, 2020, 20(16):6343-6349.
[28] Li H X, Li T, Zhang C W, et al. Exploration methods for subsurface wave by combined dispersion curves[J]. Science Technology and Engineering, 2020, 20(16):6343-6349.
[29] 张泽奇, 高级, 刘梁, 等. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6):1528-1537.
[29] Zhang Z Q, Gao J, Liu L, et al. Applicability of an imaging method for ambient noise in coal mines based on triangular and linear arrays[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1528-1537.
[30] 刘志清, 赵振国, 李添才, 等. 山区公路微动探测方法应用试验研究[J]. 地球物理学进展, 2023, 38(2):823-831.
[30] Liu Z Q, Zhao Z G, Li T C, et al. Research for the application of microtremor survey method to high-way construction in mountainous areas[J]. Progress in Geophysics, 2023, 38(2):823-831.
[31] 倪红玉, 郑海刚, 赵楠, 等. 基于密集线性台阵的背景噪声成像在明光市城市活断层调查中的应用[J]. 地球物理学报, 2022, 65(7):2518-2531.
[31] Ni H Y, Zheng H G, Zhao N, et al. Application of ambient noise tomography with a dense linear array in prospecting active faults in the Mingguang city[J]. Chinese Journal of Geophysics, 2022, 65(7):2518-2531.
[1] 彭刘亚, 冯伟栋, 解惠婷, 李飞, 杨源源, 曹均锋, 任川. 基于改进蝴蝶优化算法的瑞利波频散曲线反演方法[J]. 物探与化探, 2024, 48(3): 705-720.
[2] 付宇, 艾寒冰, 姚振岸, 梅竹虚, 苏可嘉. 基于正余弦算法的瑞利波频散曲线反演[J]. 物探与化探, 2023, 47(6): 1467-1478.
[3] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[4] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[5] 李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
[6] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[7] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
[8] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
[9] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[10] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[11] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[12] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[13] 丰赟, 沙椿. 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018, 42(2): 392-397.
[14] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[15] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com