Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 902-911    DOI: 10.11720/wtyht.2025.1270
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
平面电磁波法探测浅层局部良导体的响应特征
马宏伟1(), 刘海波2(), 刘鹏飞2, 刘晓宇3, 颜拓疆4, 龙霞5
1.山东中矿集团有限公司, 山东 招远 265401
2.招远市阜山金矿有限公司, 山东 招远 265400
3.矿冶科技集团有限公司, 北京 100160
4.云南冶金资源股份有限公司, 云南 昆明 650102
5.湖南五维地质科技有限公司, 湖南 长沙 410205
Response characteristics of shallow good local conductors using the plane electromagnetic wave method
MA Hong-Wei1(), LIU Hai-Bo2(), LIU Peng-Fei2, LIU Xiao-Yu3, YAN Tuo-Jiang4, LONG Xia5
1. Shandong Zhongkuang Group Co., Ltd., Zhaoyuan 265401, China
2. Zhaoyuan Fushan Gold Mine Co., Ltd., Zhaoyuan 265400, China
3. BGRIMM Technology Group, Beijing 100160, China
4. Yunnan Metallurgical Resources Co., Ltd., Kunming 650102, China
5. Hunan 5D Geophyson Co., Ltd., Changsha 410205, China
全文: PDF(4391 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对均匀半空间背景下的三维良导体模型进行正演计算,研究其在平面波电磁探测条件下的响应特征。三维良导体的电磁异常主要由分界面静态积累电荷产生的二次场所引起,因此目标体电阻率与围岩电阻率相对差异越大,响应相对异常也越大;观测电极距离目标体越近,响应相对异常越大。三维体在水平方向上和垂直方向上的尺寸变化对异常的影响程度不同:垂向厚度变化对异常影响较小;水平方向两个尺寸相差不大时,视电阻率响应曲线形态呈现类似于二层D型测深曲线形态,响应相对异常随水平尺寸变大而变大;当水平方向两个异常体尺寸相差较大时(大尺寸达到小尺寸的8倍以上),沿着大尺寸方向观测与沿着小尺寸方向观测得到的曲线形态不同。沿着大尺寸方向观测时,视电阻率响应曲线形态呈现类似于高低高变化的三层H型测深曲线。此外,视电阻率相对异常一般为相位相对异常值的2倍以上,而且视电阻率异常纵向上遵循静态效应规律,在高频出现异常后将一直延伸至低频更有利于发现异常,因此利用视电阻异常更有利于识别异常。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马宏伟
刘海波
刘鹏飞
刘晓宇
颜拓疆
龙霞
关键词 平面电磁波局部良导体响应特征相对异常视电阻率相位    
Abstract

This study conducted the forward modeling of a 3D good conductor model under a uniform half-space background to investigate its response characteristics in a plane electromagnetic wave survey. The electromagnetic anomalies of a three-dimensional good conductor are primarily caused by the secondary field generated by static charge accumulated at interfaces. Consequently, higher relative resistivity differences between the target conductor and the surrounding rock correspond to greater response anomalies. Additionally, a smaller distance between observation electrodes and the target conductor is associated with greater relative response anomalies. Changes in the horizontal and vertical dimensions of a conductor pose different impacts of anomalies. Specifically, variations in vertical thickness have minor impacts on the anomalies. When a conductor has similar dimensions in the horizontal direction, its apparent resistivity response curve resembles a two-layer D-type sounding curve, with the relative anomalies intensifying as the horizontal sizes increase. However, in the case of significant differences between the two dimensions in the horizontal direction (with the larger dimension being at least eight times the smaller), the response curves observed in the directions of the larger and smaller dimensions differ. Notably, the apparent resistivity response curve observed in the direction of the larger dimension resembles a three-layer H-shaped sounding pattern characterized by high, low, and high values sequentially. In addition, the relative anomalies of apparent resistivity are generally more than two times those of phase, with apparent resistivity anomalies following the static effect law in the vertical direction. Specifically, apparent resistivity anomalies in high frequencies tend to extend to low frequencies, creating favorable conditions for anomaly identification. Therefore, apparent resistivity anomalies are more conducive to anomaly identification for good conductors.

Key wordsplane electromagnetic wave    local good conductor    response characteristic    relative anomaly    apparent resistivity    phase
收稿日期: 2024-06-26      修回日期: 2024-10-25      出版日期: 2025-08-20
ZTFLH:  P631  
通讯作者: 刘海波(1988-),男,工程师,主要从事地下矿山管理工作。Email:1064815300@qq.com
作者简介: 马宏伟(1988-),男,高级工程师,主要从事矿山地质勘查、采矿工作。Email:mahongwei99954@126.com
引用本文:   
马宏伟, 刘海波, 刘鹏飞, 刘晓宇, 颜拓疆, 龙霞. 平面电磁波法探测浅层局部良导体的响应特征[J]. 物探与化探, 2025, 49(4): 902-911.
MA Hong-Wei, LIU Hai-Bo, LIU Peng-Fei, LIU Xiao-Yu, YAN Tuo-Jiang, LONG Xia. Response characteristics of shallow good local conductors using the plane electromagnetic wave method. Geophysical and Geochemical Exploration, 2025, 49(4): 902-911.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1270      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/902
Fig.1  简化模型
参数 S/m W/m H/m D/m L/m ρ1/(Ω·m) ρ0/(Ω·m) Max(${\delta }_{{\rho }_{xy}}$)/% Max(${\delta }_{{\phi }_{xy}}$)/%
L变化 20 20 20 10 10 10 100 60 23
20 20 20 10 20 10 100 50 19
20 20 20 10 40 10 100 28 12
20 20 20 10 80 10 100 17 8
Table 1  模型参数及响应异常最大值(观测极距变化)
Fig.2  L变化时目标体正上方中心测点归一化响应
参数 S/m W/m H/m D/m L/m ρ1/(Ω·m) ρ0/(Ω·m) Max(${\delta }_{{\rho }_{xy}}$)/% Max(${\delta }_{{\phi }_{xy}}$)/%
ρ10=1/10 80 80 80 40 20 10 100 61 23
80 80 80 40 20 20 200 61 23
80 80 80 40 20 50 500 61 23
80 80 80 40 20 100 1000 61 23
ρ10变化 80 80 80 40 20 5 100 71 29
80 80 80 40 20 10 100 61 23
80 80 80 40 20 20 100 46 16
80 80 80 40 20 40 100 27 8
Table 2  模型参数及响应异常最大值(电阻率变化)
Fig.3  电阻率变化时目标体正上方中心测点归一化响应
参数 S/m W/m H/m D/m L/m ρ1/(Ω·m) ρ0/(Ω·m) Max(${\delta }_{{\rho }_{xy}}$)/% Max(${\delta }_{{\phi }_{xy}}$)/%
H变化 80 80 20 80 20 10 100 15 5
80 80 40 80 20 10 100 19 6
80 80 80 80 20 10 100 23 7
80 80 160 80 20 10 100 25 7
80 80 320 80 20 10 100 25 7
S变化 20 20 20 20 20 10 100 20 7
40 20 20 20 20 10 100 28 10
80 20 20 20 20 10 100 34 12
160 20 20 20 20 10 100 37 13
320 20 20 20 20 10 100 37 13
W变化 20 20 20 20 20 10 100 20 7
20 40 20 20 20 10 100 40 16
20 80 20 20 20 10 100 52 24
20 160 20 20 20 10 100 44 24
20 320 20 20 20 10 100 44 24
S/W=1 10 10 20 20 20 10 100 5 2
20 20 20 20 20 10 100 20 8
40 40 20 20 20 10 100 53 21
80 80 20 20 20 10 100 84 45
Table 3  模型参数及响应异常最大值(目标体尺寸变化)
Fig.4  目标体尺寸变化时其正上方中心测点归一化响应
Fig.5  目标体埋深变化时其正上方中心测点归一化响应
参数 S/m W/m H/m D/m L/m ρ1/(Ω·m) ρ0/(Ω·m) Max(${\delta }_{{\rho }_{xy}}$)/% Max(${\delta }_{{\phi }_{xy}}$)/%
D变化 20 20 20 5 20 10 100 80 36
20 20 20 10 20 10 100 51 19
20 20 20 20 20 10 100 20 7
20 20 20 40 20 10 100 5 2
S=W=H=D 20 20 20 20 20 10 100 20 7
40 40 40 40 20 10 100 22 7
80 80 80 80 20 10 100 23 7
160 160 160 160 20 10 100 23 7
Table 4  模型参数及响应异常最大值(埋深变化)
Fig.6  立方体状目标体异常剖面
[1] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社,1990.
[1] Chen L S, Wang G E. Magnetotelluric sounding method[M]. Beijing: Geological Publishing House,1990.
[2] 李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.
[2] Li J M. Geoelectric field and electrical exploration[M]. Beijing: Geological Publishing House, 2005.
[3] Kaufman A A, Keller G V. The magnetotelluric sounding method,method in geochemistry and geophysics[M]. Berlin: Springer, 2020. Amsterdam: Elsevisr Scientific,1981.
[4] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
doi: 10.6038/cjg20150807
[4] Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
[5] Lei D, Fayemi B, Yang L Y, et al. The non-static effect of near-surface inhomogeneity on CSAMT data[J]. Journal of Applied Geophysics, 2017,139:306-315.
[6] Li J, Zhang X, Tang J T. Noise suppression for magnetotelluric using variational mode decomposition and detrended fluctuation analysis[J]. Journal of Applied Geophysics, 2020,180:104127.
[7] 伍亮, 李桐林, 朱成, 等. 大地电磁测深法中静态效应及其反演[J]. 地球物理学进展, 2015, 30(2):840-846.
[7] Wu L, Li T L, Zhu C, et al. Research and inversion static effect in magnetotelluric[J]. Progress in Geophysics, 2015, 30(2):840-846.
[8] 李国瑞, 席振铢, 龙霞. 基于实测积累电荷静电场消除静态效应的方法[J]. 物探与化探, 2017, 41(4):730-735.
[8] Li G R, Xi Z Z, Long X. Static displacement correction for frequency domain electromagnetic method based on second electrostatic field[J]. Geophysical and Geochemical Exploration, 2017, 41(4):730-735.
[9] 刘桂梅, 马为, 刘俊昌, 等. 大地电磁测深静态效应空间域拓扑处理技术研究[J]. 物探与化探, 2018, 42(1):118-126.
[9] Liu G M, Ma W, Liu J C, et al. Spatial domain topological processing technique for studying static effect in magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2018, 42(1):118-126.
[10] 杨天春, 胡峰铭, 于熙, 等. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4):1010-1017.
[10] Yang T C, Hu F M, Yu X, et al. Analysis and application of the responses of the frequency selection method of telluric electricity field[J]. Geophysical and Geochemical Exploration, 2023, 47(4):1010-1017.
[11] Roy K K. Natural electromagnetic fields in pure and applied geophysics[M]. Cham: Springer Cham.
[12] Vozoff K. Electromagnetic methods in applied geophysics[J]. Geophysical Surveys, 1980, 4(1):9-29.
[13] Jiracek G R. Near-surface and topographic distortions in electromagnetic induction[J]. Surveys in Geophysics, 1990, 11(2):163-203.
[14] Eikon Technologies Ltd.EMIGMA_full_manual.version 11.11.0,2024[K].https://www.petroseikon.com/EMIGMA/77ps/mt.php.
[15] Wannamaker P E, Hohmann G W, SanFilipo W A. Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations[J]. Geophysics, 1984, 49(1):60-74.
[16] Ting S C, Hohmann G W. Integral equation modeling of three-dimensional magnetotelluric response[J]. Geophysics, 1981, 46(2):182-197.
[17] 任政勇, 陈超健, 汤井田, 等. 一种新的三维大地电磁积分方程正演方法[J]. 地球物理学报, 2017, 60(11):4506-4515.
doi: 10.6038/cjg20171134
[17] Ren Z Y, Chen C J, Tang J T, et al. A new integral equation approach for 3D magnetotelluric modeling[J]. Chinese Journal of Geophysics, 2017, 60(11):4506-4515.
[1] 罗姣, 郭文波, 刘长生, 张继锋, 王伟, 徐毅, 张鑫鑫, 陈靖. 频率域地空电磁法磁场三分量全域视电阻率的定义[J]. 物探与化探, 2025, 49(3): 679-686.
[2] 李栋, 张明财, 吴远洋. 音频大地电磁接地电阻校正技术研究[J]. 物探与化探, 2025, 49(3): 614-619.
[3] 王志鑫, 邓居智, 陈辉, 邱长凯, 余辉, 尹敏, 冯敏. 复杂形态回线源的地—井瞬变电磁多分量响应特征分析[J]. 物探与化探, 2025, 49(2): 360-369.
[4] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[5] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[6] 李兴康, 付永涛, 周章国, 杨安. 地磁日变不同时段特征差异及对地磁日变改正的影响[J]. 物探与化探, 2023, 47(1): 135-145.
[7] 钱学武, 赵立业, 尹航. 航空重力梯度仪实时重力梯度解调方法[J]. 物探与化探, 2022, 46(6): 1507-1511.
[8] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[9] 秦西社, 马劼, 郭文波, 戚志鹏, 曹华科. 基于反函数原理的可控源大地电磁法全场域视电阻率定义[J]. 物探与化探, 2022, 46(2): 373-382.
[10] 石加玉, 郭鹏, 李勇. 频谱激电测量仪器关键技术研究及实现[J]. 物探与化探, 2021, 45(6): 1475-1481.
[11] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[12] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[13] 邓儒炳, 阎建国, 陈琪, 宋鑫磊. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3): 702-711.
[14] 席振铢, 木仁, 徐昱, 周胜, 陈兴朋. 瞬变电磁感应式天线分布电容零相位测试方法与应用[J]. 物探与化探, 2021, 45(3): 737-741.
[15] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com