Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 360-369    DOI: 10.11720/wtyht.2025.2486
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
复杂形态回线源的地—井瞬变电磁多分量响应特征分析
王志鑫1,2(), 邓居智1,2(), 陈辉1,2, 邱长凯3, 余辉1,2, 尹敏1,2, 冯敏1,2
1.核资源与环境国家重点实验室,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
3.中国地质调查局 发展研究中心,北京 100083
Analysis of multi-component response characteristics of surface-to-borehole transient electromagnetic method with complex-shaped loop source
WANG Zhi-Xin1,2(), DENG Ju-Zhi1,2(), CHEN Hui1,2, QIU Chang-Kai3, YU Hui1,2, YIN Min1,2, FENG Min1,2
1. State Key Laboratory of Nuclear Resources and Environment, Nanchang 330013, China
2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China
3. Development and Research Center, China Geological Survey, Beijing 100083, China
全文: PDF(8203 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地—井瞬变电磁法在实际勘探中容易受到不规则发射回线和倾斜钻孔的影响,这会增加三分量感应磁场的测量误差,并导致解释精度下降。本文首先在建立任意形态发射回线源激发下的地—井瞬变电磁三分量测量模型的基础上,通过坐标变换得到倾斜钻孔下的地—井瞬变电磁响应的计算公式,然后采用数值滤波算法实现了全空间瞬变电磁场的一维正演。多个典型模型的计算结果表明,瞬变磁场三分量受发射回线形态影响严重,其中XY水平分量响应所受到的影响远大于Z垂向分量的响应;偶数边的正多边形回线源装置的瞬变电磁三分量场分布均匀且对称,且在周长相同的情况下,边数越多,其激发的一次场能量越大,野外采用矩形回线源装置最具性价比;井斜角和偏移距主要影响三分量响应的幅值大小,而钻孔方位主要影响水平分量的符号,含有比较丰富的定位信息。在地—井瞬变电磁勘探中,需要准确测量场源路径和井几何形态,以便进行必要修正,从而提升解释的准确性和可信度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志鑫
邓居智
陈辉
邱长凯
余辉
尹敏
冯敏
关键词 地—井瞬变电磁法三分量响应响应特征发射场源    
Abstract

In actual exploration, the surface-to-borehole transient electromagnetic (TEM) method is prone to be affected by irregular transmitter loops and inclined boreholes, resulting in increased measurement errors of the three-component induced magnetic fields and decreased interpretation accuracy. By establishing surface-to-borehole TEM method-based three-component measurement models under the excitement of transmitter loops of various shapes, this study derived the calculation formulas for surface-to-borehole TEM responses under inclined boreholes through coordinate transformation. Then, it achieved one-dimensional forward modeling of the full-space TEM field using a numerical filtering algorithm. The calculation results of multiple typical models indicate that the three components of the transient magnetic fields were significantly influenced by the shapes of the transmitter loops, with the impacts on horizontal components x and y far more significant than those on vertical component z. The transmitter loops of regular polygons with even edges as the sources exhibited uniform and symmetric distribution of the TEM fields of the three components. Under the condition of the same perimeter, a greater number of edges of the transmitter loops associated with greater primary field energy excited by the loops. Therefore, rectangular transmitter loops as the sources prove the most cost-effective. The inclination and offset primarily affected the amplitude of the three-component responses. In contrast, the borehole azimuth mainly influenced the sign of the horizontal components, bearing rich information on location. Therefore, in the exploration using the surface-to-borehole TEM method, it is necessary to accurately determine source paths and the geometric morphologies of boreholes to make essential corrections, thus improving the accuracy and reliability of interpretations.

Key wordssurface-to-borehole transient electromagnetic method    three-component response    response characteristic    transmitting source
收稿日期: 2023-11-10      修回日期: 2024-07-12      出版日期: 2025-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42104081);国家自然科学基金项目(42130811);国家自然科学基金项目(41864004);江西省主要学科学术带头人培养计划项目(20204BCJL23058);自然资源部深地科学与探测技术实验室开放课题(Sinoprobe Lab 202214)
通讯作者: 邓居智(1972-),男,教授,主要从事资源地球物理勘探和电磁法正反演研究工作。Email:jzhdeng@ecut.edu.cn
作者简介: 王志鑫(1998-),男,硕士研究生,主要研究方向为瞬变电磁方法的理论及应用。Email:2021110173@ecut.edu.cn
引用本文:   
王志鑫, 邓居智, 陈辉, 邱长凯, 余辉, 尹敏, 冯敏. 复杂形态回线源的地—井瞬变电磁多分量响应特征分析[J]. 物探与化探, 2025, 49(2): 360-369.
WANG Zhi-Xin, DENG Ju-Zhi, CHEN Hui, QIU Chang-Kai, YU Hui, YIN Min, FENG Min. Analysis of multi-component response characteristics of surface-to-borehole transient electromagnetic method with complex-shaped loop source. Geophysical and Geochemical Exploration, 2025, 49(2): 360-369.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2486      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/360
Fig.1  任意回线源的地—井TEM系统模型
Fig.2  数值解与解析解对比
Fig.3  不规则回线模型算例结果对比
Fig.4  四种形态回线源
Fig.5  四种回线源瞬变场的X分量响应特征
Fig.6  四种回线源瞬变场的Z分量响应特征
Fig.7  不同形态源的三分量响应曲线
(虚线代表符号为负)
Fig.8  不同井偏移距的XZ分量响应曲线(虚线代表符号为负)
Fig.9  不同井斜的UA分量响应曲线
(虚线代表符号为负)
Fig.10  不同井方位的XY分量响应曲线
(虚线代表符号为负)
[1] 蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
[1] Jiang B Y. Transient electromagnetic exploration with practical near-field magnetic source[M]. Beijing: Geological Publishing House, 1998.
[2] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[2] Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South University Press, 2007.
[3] Woods D V. A model study of the Crone borehole pulse electromagnetic (PEM) system[D]. Kingston: Queen’s University, 1975.
[4] Dyck A V. The role of simple computer models in interpretations of wide-band,drill-hole electromagnetic surveys in mineral exploration[J]. Geophysics, 1984, 49(7):957.
[5] Eaton P A, Hohmann G W. The influence of a conductive host on two-dimensional borehole transient electromagnetic responses[J]. Geophysics, 1984, 49(7):861-869.
[6] Buselli G, Lee S K. Modelling of drill-hole TEM responses for multiple targets covered by a conductive overburden[J]. Exploration Geophysics, 1996, 27(2-3):141-153.
[7] 孟庆鑫, 潘和平, 牛峥. 大地介质影响下地—井瞬变电磁的正演模拟分析[J]. 中国矿业大学学报, 2014, 43(6):1113-1119.
[7] Meng Q X, Pan H P, Niu Z. Forward simulation of surface-borehole TEM in geological medium effect[J]. Journal of China University of Mining & Technology, 2014, 43(6):1113-1119.
[8] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5):970-976.
[8] Yi H C. Research on response of ground-borehole TEM[J]. Geophysical and Geochemical Exploration, 2018, 42(5):970-976.
[9] 郭建磊, 姜涛, 郭恒, 等. 轴向各向异性地-井瞬变电磁三分量响应特征[J]. 地球科学与环境学报, 2020, 42(6):737-748.
[9] Guo J L, Jiang T, Guo H, et al. Characteristics of axial anisotropic borehole transient electromagnetic three-component response[J]. Journal of Earth Sciences and Environment, 2020, 42(6):737-748.
[10] 郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2):362-372,382.
[10] Guo J L. Three-component responses of axially anisotropic formations using the transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2022, 46(2):362-372,382.
[11] Li H J, Mao Y R, Wang X Y, et al. Characterization of surface-borehole transient electromagnetic response in electrical anisotropic media[J]. Minerals, 2023, 13(5):674.
[12] 张杰, 王兴春, 邓晓红, 等. 地—井瞬变电磁井旁板状导体异常响应特征分析[J]. 物探化探计算技术, 2014, 36(6):641-648.
[12] Zhang J, Wang X C, Deng X H, et al. Borehole transient electromagnetic method response characteristics of the borehole-side plate-like conductor[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):641-648.
[13] 唐继强, 席振铢, 王鹤, 等. 三维体地—井瞬变电磁三分量测量响应规律研究[J]. 工程地球物理学报, 2015, 12(3):315-321.
[13] Tang J Q, Xi Z Z, Wang H, et al. The regularity of three-component measurement responses in surface-hole TEM[J]. Chinese Journal of Engineering Geophysics, 2015, 12(3):315-321.
[14] 王鹏. 积水采空区地井瞬变电磁法探测[J]. 煤炭技术, 2017, 36(6):134-136.
[14] Wang P. Surface-hole TEM for detection of coal mine water collecting area[J]. Coal Technology, 2017, 36(6):134-136.
[15] 宋汐瑾, 党瑞荣, 郭宝龙, 等. 井中磁源瞬变电磁响应特征研究[J]. 地球物理学报, 2011, 54(4):1122-1129.
[15] Song X J, Dang R R, Guo B L, et al. Research on transient electromagnetic response of magnetic source in borehole[J]. Chinese Journal of Geophysics, 2011, 54(4):1122-1129.
[16] 姚伟华, 王鹏, 李明星, 等. 地孔瞬变电磁法超前探测数值模拟响应特征[J]. 煤炭学报, 2019, 44(10):3145-3153.
[16] Yao W H, Wang P, Li M X, et al. Numerical simulation response characteristics of down-hole TEM for advanced detection[J]. Journal of China Coal Society, 2019, 44(10):3145-3153.
[17] 王鹏, 程建远, 姚伟华, 等. 积水采空区地面—钻孔瞬变电磁探测技术[J]. 煤炭学报, 2019, 44(8):2502-2508.
[17] Wang P, Cheng J Y, Yao W H, et al. Technology of detecting water-filled goaf beside borehole using downhole transient electromagnetic method[J]. Journal of China Coal Society, 2019, 44(8):2502-2508.
[18] Wang P, Li M X, Yao W H, et al. Detection of abandoned water-filled mine tunnels using the downhole transient electromagnetic method[J]. Exploration Geophysics, 2020, 51(6):667-682.
[19] 张杰, 邓晓红, 谭捍东, 等. 地—井瞬变电磁资料矢量交会解释方法[J]. 物探与化探, 2015, 39(3):572-579.
[19] Zhang J, Deng X H, Tan H D, et al. A study of vector intersection for borehole transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2015, 39(3):572-579.
[20] 赵友超, 张军, 范涛, 等. 地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究[J]. 物探与化探, 2022, 46(2):383-391.
[20] Zhao Y C, Zhang J, Fan T, et al. Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies[J]. Geophysical and Geochemical Exploration, 2022, 46(2):383-391.
[21] 李建慧, 胡祥云, 陈斌, 等. 复杂形态回线源激发电磁场的矢量有限元解[J]. 石油地球物理勘探, 2017, 52(6):1324-1332,1125.
[21] Li J H, Hu X Y, Chen B, et al. 3D electromagnetic modeling with vector finite element for a complex-shaped loop source[J]. Oil Geophysical Prospecting, 2017, 52(6):1324-1332,1125.
[22] Kaufman A A, Kelland G V. Electromagnetic sounding of frequency domain and time domain[J]. Geological Publishing House, 1987.
[23] Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997, 45(5):745-762.
[24] 朴化荣. 电磁测深法原理[M]. 北京: 地质出版社, 1990.
[24] Piao H R. Principle of electromagnetic sounding method[M]. Beijing: Geological Publishing House, 1990.
[25] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
[25] Li X. Theory and application of transient electromagnetic sounding[M]. Xi'an: Shaanxi Science & Technology Press, 2002.
[26] 戚志鹏, 智庆全, 李貅, 等. 大定源瞬变电磁三分量全域视电阻率定义与三分量联合反演[J]. 物探与化探, 2014, 38(4):742-749.
[26] Qi Z P, Zhi Q Q, Li X, et al. The definition of the full-zone apparent resistivity and the constrained inversion of the three components of fixed source TEM[J]. Geophysical and Geochemical Exploration, 2014, 38(4):742-749.
[27] 王鹏飞, 王书明, 安永宁. 不规则回线瞬变电磁法一维烟圈反演研究[J]. 地球物理学进展, 2019, 34(3):1113-1120.
[27] Wang P F, Wang S M, An Y N. One-dimensional smoke ring inversion of irregular loop source transient electromagnetic method[J]. Progress in Geophysics, 2019, 34(3):1113-1120.
[1] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[2] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[3] 刘祖鉴, 刘诗华, 马一行, 张博洋. 薄板状导体地-井瞬变电磁场数值模拟及晚期响应特征[J]. 物探与化探, 2020, 44(3): 685-690.
[4] 杜庆丰, 冯晓兰, 黄跃. 地—井瞬变电磁关键技术问题研究[J]. 物探与化探, 2019, 43(1): 143-147.
[5] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5): 970-976.
[6] 林振洲, 刘东明, 潘和平, 李洋, 高文利, 邱礼泉, 张小未. 木里地区天然气水合物测井响应特征[J]. 物探与化探, 2017, 41(6): 1012-1018.
[7] 覃瑞东, 林振洲, 潘和平, 秦臻, 邓呈祥, 纪扬, 徐伟. 木里地区水合物及岩性测井识别方法[J]. 物探与化探, 2017, 41(6): 1088-1098.
[8] 许新刚, 徐正玉. 地—井瞬变电磁响应三维时域有限差分模拟[J]. 物探与化探, 2017, 41(3): 496-504.
[9] 武军杰, 李貅, 智庆全, 邓晓红, 张杰, 王兴春, 杨毅. 电性源地-井瞬变电磁异常场响应特征初步分析[J]. 物探与化探, 2017, 41(1): 129-135.
[10] 王攀, 梁明星. 煤系烃源岩测井响应特征及有机碳评价方法[J]. 物探与化探, 2016, 40(1): 197-202.
[11] 强建科, 周俊杰, 满开峰. 时间域航空电磁法2.5维有限元模拟[J]. 物探与化探, 2015, 39(5): 1059-1062.
[12] 陈礼, 杨小江, 文晓涛, 石战战, 隆芳芳. 基于波动方程数值模拟的冲积扇地震响应特征[J]. 物探与化探, 2013, 37(2): 314-317.
[13] 武毅, 封绍武, 王亚清. 应用大地电磁法TE、TM模式勘查构造裂隙水[J]. 物探与化探, 2011, 35(3): 329-332.
[14] 蒋邦远. TEM中心回线中—远带响应特征[J]. 物探与化探, 2010, 34(2): 176-179.
[15] 杨云见, 何展翔, 王绪本, 罗卫锋. 直流电测深法与中心回线瞬变电磁法联合反演[J]. 物探与化探, 2008, 32(4): 442-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com