Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1315-1326    DOI: 10.11720/wtyht.2022.1453
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例
岳航羽1,2,3,4(), 王小江2,3(), 王磊5, 陈孝强1, 姜春香2,3, 李培2,3, 张保卫1,2,3
1.中国地质调查局 地球物理调查中心,河北 廊坊 065000
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3.国家现代地质勘查工程技术研究中心,河北 廊坊 065000
4.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
5.辽宁省地质矿产研究院有限责任公司,辽宁 沈阳 110032
Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia
YUE Hang-Yu1,2,3,4(), WANG Xiao-Jiang2,3(), WANG Lei5, CHEN Xiao-Qiang1, JIANG Chun-Xiang2,3, LI Pei2,3, ZHANG Bao-Wei1,2,3
1. Center for Geophysical Survey,China Geological Survey,Langfang 065000,China
2. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
3. National Center for Geological Exploration Technology,Langfang 065000,China
4. School of Geophysics and Information Technology,China University of Geosciences (Beijing),Beijing 100083,China
5. Liaoning Institute of Geology and Mineral Resources Co., Ltd.,Shenyang 110032,China
全文: PDF(24023 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

深部金属矿常常是多种不同尺度的非均匀地质体共生,加之矿区多处于地质构造复杂、断层较发育、岩性变化剧烈地区,地表条件和表层结构复杂,造成金属矿地震数据往往是复杂多变、多种波相互干涉的地震波场,信噪比极低,严重制约了金属矿地震解释和隐伏矿体预测。本文以内蒙古查干花钼矿区二维地震数据为例,开展深部金属矿地震数据处理关键技术研究,通过分析研究区内金属矿地震数据的特点,归纳总结金属矿地震数据处理的难点,制定一套针对查干花钼矿区的地震数据处理流程。实际处理效果与地质钻孔剖面上已知的矿体分布吻合较好,矿体较厚区域产生的反射波能量较强,薄层矿体产生的反射波振幅较弱,并支撑了区内地质构造的推断及隐伏矿体的圈定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳航羽
王小江
王磊
陈孝强
姜春香
李培
张保卫
关键词 深部金属矿地震数据处理关键技术查干花钼矿区    
Abstract

Deep metal deposits tend to be associated with heterogeneous geological bodies on different scales.Moreover,their orefields mostly lie in areas with complex geological structures,developed faults,and intense lithological changes and have complex surface conditions and structures.As a result,the seismic data of metal deposits frequently originate from complex and variable seismic wave fields suffering the mutual inference of multiple types of waves.Therefore,the seismic data have extremely low signal-to-noise ratios,which severely restricts the seismic interpretation of metal deposits and the prediction of concealed orebodies. With the 2D seismic data of the Chaganhua molybdenum orefield in Inner Mongolia as a case study,this study explored the key techniques for the seismic data processing of deep metal deposits.Specifically,this study analyzed the characteristic of seismic data of the Chaganhua molybdenum deposit and summarized the difficulties with seismic data processing of the metal deposit.Based on these,this study developed a set of processes for the data processing of the Chaganhua molybdenum orefield.The actual processing results agree well with the known orebody distribution in the geological borehole section.To be specific,zones with thick ore bodies generated strong reflected energy,while thinner ore bodies exhibited low-amplitude reflected waves.The results of this study can provide strong support for inferring geological structures and delineating concealed orebodies in the study area.

Key wordsdeep metal deposits    seismic data processing    key technology    Chaganhua molybdenum orefield
收稿日期: 2021-08-27      修回日期: 2022-09-29      出版日期: 2022-12-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目(2018YFF01013500);中国地质调查局地质调查项目(DD20208001);中国地质调查局地质调查项目(DD20208002);物化探所中央级公益性科研院所基本科研业务费专项资金资助项目(AS2020Y02)
通讯作者: 王小江
作者简介: 岳航羽(1989-),男,高级工程师,博士在读,现主要从事地震数据采集、处理及综合研究工作。Email:yhangyu_cgs@163.com
引用本文:   
岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
YUE Hang-Yu, WANG Xiao-Jiang, WANG Lei, CHEN Xiao-Qiang, JIANG Chun-Xiang, LI Pei, ZHANG Bao-Wei. Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia. Geophysical and Geochemical Exploration, 2022, 46(6): 1315-1326.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1453      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1315
Fig.1  查干花钼矿区二维地震测线位置
Fig.2  查干花钼矿区测线上不同位置的原始单炮记录
Fig.3  查干花钼矿区地震数据处理流程
Fig.4  查干花钼矿区金属矿地震静校正前(a)后(b)的单炮记录对比
Fig.5  查干花钼矿区金属矿地震静校正前(a)后(b)的叠加剖面对比
Fig.6  查干花钼矿区金属矿地震真振幅恢复前(a)后(b)的单炮记录对比
Fig.7  查干花钼矿区金属矿地震真振幅恢复前(a)后(b)的叠加剖面对比
Fig.8  查干花钼矿区金属矿地震叠前噪声衰减前(a)后(b)的单炮记录对比
Fig.9  查干花钼矿区金属矿地震叠前噪声衰减前(a)后(b)的叠加剖面对比
Fig.10  查干花钼矿区金属矿地震反褶积前(a)后(b)的单炮记录对比
Fig.11  查干花钼矿区金属矿地震反褶积前(a)后(b)的叠加剖面对比
Fig.12  查干花钼矿区金属矿地震反褶积前(a)后(b)的频谱特征对比
Fig.13  查干花钼矿区金属矿地震高精度速度分析
a—质控道集;b—叠加段;c—速度谱
Fig.14  查干花钼矿区金属矿地震偏移成像前(a)后(b)的剖面对比
Fig.15  查干花钼矿区金属矿地震成像剖面放大显示(a)和已知矿体地质钻孔剖面(b)
Fig.16  查干花钼矿区金属矿地震数据处理成果剖面
[1] Green A G, Mair J A. Subhorizontal fractures in a granitic pluton:Their detection and implications for radioactive waste disposal[J]. Geophysics, 1983, 48(11):1428-1449.
doi: 10.1190/1.1441428
[2] 巩向博. 金属矿地震高精度成像与数据处理方法研究[D]. 长春: 吉林大学, 2011.
[2] Gong X B. High precision imaging and applied research of data processing for mineral seismic exploration[D]. Changchun: Jilin University, 2011.
[3] 姜春香. 金属矿地震资料降矂处理技术研究[D]. 北京: 中国地质科学院, 2015.
[3] Jiang C X. The serial denoising technology research in metal seismic data processing[D]. Beijing: Chinese Academy of Geological Sciences, 2015.
[4] 勾丽敏, 刘学伟, 雷鹏, 等. 金属矿地震勘探技术方法研究综述——金属矿地震勘探技术及其现状[J]. 勘探地球物理进展, 2007, 30(1):16-24.
[4] Gou L M, Liu X W, Lei P, et al. Review of seismic survey in mining exploration:Theory and reflection seismic method[J]. Progress in Exploration Geophysics, 2007, 30(1):16-24.
[5] Eaton D W, Milkereit B, Salisbury M. Seismic methods for deep mineral exploration: Mature technologies adapted to new targets[J]. The Leading Edge, 2003, 22(6):580-585.
doi: 10.1190/1.1587683
[6] Malehmir A, Durrheim R, Bellefleur G, et al. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future[J]. Geophysics, 2012, 77(5):WC173-WC190.
doi: 10.1190/geo2012-0028.1
[7] Malehmir A, Maries G, Bäckström E, et al. Developing cost-effective seismic mineral exploration methods using a landstreamer and a drophammer[J]. Scientific Reports, 2017, 7(1):10325.
doi: 10.1038/s41598-017-10451-6 pmid: 28871161
[8] 徐明才, 高景华, 荣立新, 等. 从金属矿地震方法的试验效果探讨其应用前景[J]. 中国地质, 2004, 31(1):108-112.
[8] Xu M C, Gao J H, Rong L X, et al. Application prospects of the seismic method as discussed from the experimental effects of the method for metal exploration[J]. Geology in China, 2004, 31(1):108-112.
[9] 徐明才, 高景华, 荣立新, 等. 散射波地震方法在蔡家营多金属矿区的试验研究[J]. 物探与化探, 2003, 27(1):49-54.
[9] Xu M C, Gao J H, Rong L X, et al. An experimental study of seismic scattering event method in the Caijiaying polymetallic ore district[J]. Geophysical and Geochemical Exploration, 2003, 27(1):49-54.
[10] 徐明才, 高景华, 荣立新, 等. 地面地震层析成像和高分辨率地震联合勘探技术[J]. 地质与勘探, 2005, 41(4):83-87.
[10] Xu M C, Gao J H, Rong L X, et al. Combining exploration technique of the ground seismic tomography and the high resolution seismic method[J]. Geology and Prospecting, 2005, 41(4):83-87.
[11] 徐明才, 荣立新, 刘建勋, 等. 地震方法在拜仁达坝银铅锌多金属矿区的应用试验研究[J]. 地质与勘探, 2007, 43(4):61-64.
[11] Xu M C, Rong L X, Liu J X, et al. Application of seismic method at Bairendaba Ag-Pb-Zn polymetallic deposit in Inner Mongolia[J]. Geology and Prospecting, 2007, 43(4):61-64.
[12] 徐明才, 姜春香, 柴铭涛, 等. 内蒙古准苏吉花铜钼矿区三分量地震试验研究[J]. 地球物理学进展, 2016, 31(3):1229-1236.
[12] Xu M C, Jiang C X, Chai M T, et al. Three-component seismic experimental study of the Zhunsujihua Cu-Mo mine in Inner Mongolia[J]. Progress in Geophysics, 2016, 31(3):1229-1236.
[13] 徐明才, 周建勇, 柴铭涛, 等. 内蒙古准苏吉花斑岩型钼矿及外围反射地震探测[J]. 物探与化探, 2016, 40(4):639-647.
[13] Xu M C, Zhou J Y, Chai M T, et al. Seismic reflection detection in the Zhunsujihua porphyry molybdenum ore district and its periphery, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2016, 40(4):639-647.
[14] 吕庆田, 侯增谦, 史大年, 等. 铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J]. 矿床地质, 2004, 23(3):390-398.
[14] Lyu Q T, Hou Z Q, Shi D N, et al. Tentative seismic reflection study of Shizishan Orefield in Tongling and its significance in regional exploration[J]. Mineral Deposits, 2004, 23(3):390-398.
[15] 吕庆田, 史大年, 赵金花, 等. 深部矿产勘查的地震学方法:问题与前景——铜陵矿集区的应用实例[J]. 地质通报, 2005, 24(3):211-218.
[15] Lyu Q T, Shi D N, Zhao J H, et al. Seismic method for deeper mineral exploration:Problems and prospects——A case study of the Tongling ore district[J]. Geological Bulletin of China, 2005, 24(3):211-218.
[16] 吕庆田, 韩立国, 严加永, 等. 庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像[J]. 岩石学报, 2010, 26(9):2598-2612.
[16] Lyu Q T, Han L G, Yan J Y, et al. Seismic imaging of volcanic hydrothermal iron sulfur deposits and its hosting structure in Luzong ore district[J]. Acta Petrologica Sinica, 2010, 26(9):2598-2612.
[17] 王俊秋, 林君, 姜弢, 等. 可控震源地震方法在金昌铜镍矿区的应用实验[J]. 吉林大学学报:地球科学版, 2011, 41(5):1617-1622.
[17] Wang J Q, Lin J, Jiang T, et al. Experiment and application of controlled vibrator seismic method at Jinchang Copper-Nickel metal deposit[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(5):1617-1622.
[18] 刘建勋, 周建勇, 徐明才, 等. 地震勘查技术在喀拉通克矿区的应用[J]. 物探与化探, 2017, 41(3):437-444.
[18] Liu J X, Zhou J Y, Xu M C, et al. The application of seismic exploration technology in the Kalatongke orefield[J]. Geophysical and Geochemical Exploration, 2017, 41(3):437-444.
[19] 周建勇, 徐明才, 刘建勋, 等. 反射地震成像技术在新疆喀拉通克铜镍矿区的应用[J]. 地质与勘探, 2016, 52(5):910-917.
[19] Zhou J Y, Xu M C, Liu J X, et al. Application of seismic reflection imaging in the Karatungk Cu-Ni deposit of Xinjiang[J]. Geology and Prospecting, 2016, 52(5):910-917.
[20] 李光辉, 李月. 金属矿山地地区地震勘探随机噪声的波动方程模拟[J]. 地球物理学报, 2015, 58(12):4576-4593.
[20] Li G H, Li Y. Wave equation modeling of random noise in seismic exploration for metal deposits in mountainous areas[J]. Chinese Journal of Geophysics, 2015, 58(12):4576-4593.
[21] 张保卫, 王小江, 张凯. 新疆喀拉通克铜镍矿地震资料噪声分析与压制[J]. 物探与化探, 2016, 40(4):771-777.
[21] Zhang B W, Wang X J, Zhang K. Analysis and suppression of seismic data noise in the Kalatongke copper-nickel deposit,northern Xinjiang[J]. Geophysical and Geochemical Exploration, 2016, 40(4):771-777.
[22] 郑升, 马海涛, 李月. 基于自适应阈值RCSST变换的金属矿山地地区地震信号随机噪声消减[J]. 地球物理学报, 2019, 62(10):4020-4027.
[22] Zheng S, Ma H T, Li Y. Reduction of seismic random noise in mountainous metallic mines based on adaptive threshold RCSST[J]. Chinese Journal of Geophysics, 2019, 62(10):4020-4027.
[1] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[2] 苏世龙, 贺振华, 戴晓云, 王九拴, 张辉, 辛华刚, 刘艳娜. 岩性油气藏地震保幅处理技术及其应用——以东部某油田岩性气藏为例[J]. 物探与化探, 2015, 39(1): 54-59.
[3] 李惠, 禹斌, 李德亮, 张国义, 马久菊, 孙凤舟, 任曙光, 刘春岚, 吕明光, 李上, 魏江, 赵佳祥, 王俊, 李永才, 王一大. 构造叠加晕法预测盲矿的关键技术[J]. 物探与化探, 2014, 38(2): 189-193.
[4] 马婷, 周学明. 两种不同求和路径的叠前时间偏移方法[J]. 物探与化探, 2012, 36(2): 321-324.
[5] 王跃, 许庆国. 时间域拉东变换的实现及其改进[J]. 物探与化探, 2011, 35(6): 860-864.
[6] 李杏莉, 王彦春. 不同基准面上的速度场及时深转换[J]. 物探与化探, 2009, 33(1): 49-53.
[7] 陈凤云, 杭远, 康建林. 相干和方差数据体的算法研究及应用[J]. 物探与化探, 2006, 30(3): 250-253,257.
[8] 刘保童, 朱光明. 自适应主分量提取算法及应用[J]. 物探与化探, 2005, 29(5): 452-454.
[9] 赵加凡,陈小宏. 基于主成分分析与K-L变换的双重属性优化方法[J]. 物探与化探, 2005, 29(3): 253-256.
[10] 段洪有, 曾庆才, 李琛. 复杂地表条件下折射静校正技术的应用[J]. 物探与化探, 2005, 29(2): 142-145.
[11] 李锋, 曾庆才, 吕金博, 张建成. 西部复杂地区地震资料处理方法[J]. 物探与化探, 2004, 28(2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com