Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia
YUE Hang-Yu1,2,3,4(), WANG Xiao-Jiang2,3(), WANG Lei5, CHEN Xiao-Qiang1, JIANG Chun-Xiang2,3, LI Pei2,3, ZHANG Bao-Wei1,2,3
1. Center for Geophysical Survey,China Geological Survey,Langfang 065000,China 2. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China 3. National Center for Geological Exploration Technology,Langfang 065000,China 4. School of Geophysics and Information Technology,China University of Geosciences (Beijing),Beijing 100083,China 5. Liaoning Institute of Geology and Mineral Resources Co., Ltd.,Shenyang 110032,China
Deep metal deposits tend to be associated with heterogeneous geological bodies on different scales.Moreover,their orefields mostly lie in areas with complex geological structures,developed faults,and intense lithological changes and have complex surface conditions and structures.As a result,the seismic data of metal deposits frequently originate from complex and variable seismic wave fields suffering the mutual inference of multiple types of waves.Therefore,the seismic data have extremely low signal-to-noise ratios,which severely restricts the seismic interpretation of metal deposits and the prediction of concealed orebodies. With the 2D seismic data of the Chaganhua molybdenum orefield in Inner Mongolia as a case study,this study explored the key techniques for the seismic data processing of deep metal deposits.Specifically,this study analyzed the characteristic of seismic data of the Chaganhua molybdenum deposit and summarized the difficulties with seismic data processing of the metal deposit.Based on these,this study developed a set of processes for the data processing of the Chaganhua molybdenum orefield.The actual processing results agree well with the known orebody distribution in the geological borehole section.To be specific,zones with thick ore bodies generated strong reflected energy,while thinner ore bodies exhibited low-amplitude reflected waves.The results of this study can provide strong support for inferring geological structures and delineating concealed orebodies in the study area.
岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
YUE Hang-Yu, WANG Xiao-Jiang, WANG Lei, CHEN Xiao-Qiang, JIANG Chun-Xiang, LI Pei, ZHANG Bao-Wei. Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia. Geophysical and Geochemical Exploration, 2022, 46(6): 1315-1326.
Green A G, Mair J A. Subhorizontal fractures in a granitic pluton:Their detection and implications for radioactive waste disposal[J]. Geophysics, 1983, 48(11):1428-1449.
doi: 10.1190/1.1441428
[2]
巩向博. 金属矿地震高精度成像与数据处理方法研究[D]. 长春: 吉林大学, 2011.
[2]
Gong X B. High precision imaging and applied research of data processing for mineral seismic exploration[D]. Changchun: Jilin University, 2011.
[3]
姜春香. 金属矿地震资料降矂处理技术研究[D]. 北京: 中国地质科学院, 2015.
[3]
Jiang C X. The serial denoising technology research in metal seismic data processing[D]. Beijing: Chinese Academy of Geological Sciences, 2015.
Gou L M, Liu X W, Lei P, et al. Review of seismic survey in mining exploration:Theory and reflection seismic method[J]. Progress in Exploration Geophysics, 2007, 30(1):16-24.
[5]
Eaton D W, Milkereit B, Salisbury M. Seismic methods for deep mineral exploration: Mature technologies adapted to new targets[J]. The Leading Edge, 2003, 22(6):580-585.
doi: 10.1190/1.1587683
[6]
Malehmir A, Durrheim R, Bellefleur G, et al. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future[J]. Geophysics, 2012, 77(5):WC173-WC190.
doi: 10.1190/geo2012-0028.1
[7]
Malehmir A, Maries G, Bäckström E, et al. Developing cost-effective seismic mineral exploration methods using a landstreamer and a drophammer[J]. Scientific Reports, 2017, 7(1):10325.
doi: 10.1038/s41598-017-10451-6
pmid: 28871161
Xu M C, Gao J H, Rong L X, et al. Application prospects of the seismic method as discussed from the experimental effects of the method for metal exploration[J]. Geology in China, 2004, 31(1):108-112.
Xu M C, Gao J H, Rong L X, et al. An experimental study of seismic scattering event method in the Caijiaying polymetallic ore district[J]. Geophysical and Geochemical Exploration, 2003, 27(1):49-54.
Xu M C, Gao J H, Rong L X, et al. Combining exploration technique of the ground seismic tomography and the high resolution seismic method[J]. Geology and Prospecting, 2005, 41(4):83-87.
Xu M C, Rong L X, Liu J X, et al. Application of seismic method at Bairendaba Ag-Pb-Zn polymetallic deposit in Inner Mongolia[J]. Geology and Prospecting, 2007, 43(4):61-64.
Xu M C, Jiang C X, Chai M T, et al. Three-component seismic experimental study of the Zhunsujihua Cu-Mo mine in Inner Mongolia[J]. Progress in Geophysics, 2016, 31(3):1229-1236.
Xu M C, Zhou J Y, Chai M T, et al. Seismic reflection detection in the Zhunsujihua porphyry molybdenum ore district and its periphery, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2016, 40(4):639-647.
Lyu Q T, Hou Z Q, Shi D N, et al. Tentative seismic reflection study of Shizishan Orefield in Tongling and its significance in regional exploration[J]. Mineral Deposits, 2004, 23(3):390-398.
Lyu Q T, Shi D N, Zhao J H, et al. Seismic method for deeper mineral exploration:Problems and prospects——A case study of the Tongling ore district[J]. Geological Bulletin of China, 2005, 24(3):211-218.
Lyu Q T, Han L G, Yan J Y, et al. Seismic imaging of volcanic hydrothermal iron sulfur deposits and its hosting structure in Luzong ore district[J]. Acta Petrologica Sinica, 2010, 26(9):2598-2612.
Wang J Q, Lin J, Jiang T, et al. Experiment and application of controlled vibrator seismic method at Jinchang Copper-Nickel metal deposit[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(5):1617-1622.
Liu J X, Zhou J Y, Xu M C, et al. The application of seismic exploration technology in the Kalatongke orefield[J]. Geophysical and Geochemical Exploration, 2017, 41(3):437-444.
Zhou J Y, Xu M C, Liu J X, et al. Application of seismic reflection imaging in the Karatungk Cu-Ni deposit of Xinjiang[J]. Geology and Prospecting, 2016, 52(5):910-917.
Li G H, Li Y. Wave equation modeling of random noise in seismic exploration for metal deposits in mountainous areas[J]. Chinese Journal of Geophysics, 2015, 58(12):4576-4593.
Zhang B W, Wang X J, Zhang K. Analysis and suppression of seismic data noise in the Kalatongke copper-nickel deposit,northern Xinjiang[J]. Geophysical and Geochemical Exploration, 2016, 40(4):771-777.
Zheng S, Ma H T, Li Y. Reduction of seismic random noise in mountainous metallic mines based on adaptive threshold RCSST[J]. Chinese Journal of Geophysics, 2019, 62(10):4020-4027.