Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1266-1274    DOI: 10.11720/wtyht.2021.1019
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
城市三维地震资料处理浅层成像关键技术
雍凡1,2(), 刘子龙2, 蒋正中2, 罗水余2, 刘建生2
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
The key technology of shallow imaging in urban 3D seismic data processing
YONG Fan1,2(), LIU Zi-Long2, JIANG Zheng-Zhong2, LUO Shui-Yu2, LIU Jian-Sheng2
1. School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China
2. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
全文: PDF(11515 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

浅层三维地震勘探数据量大、偏移归位准确、横向分辨率高,能够克服二维地震勘探在城市中受障碍物限制致使测线布设与构造走向斜交,浅层小构造控制程度较差和断层归位不够准确等问题。因此浅层三维地震探测可以为城市地下空间探查、活动断裂探测和地质灾害勘查等方面提供更高质量的数据。然而城市三维地震勘探面临表层速度分布不均匀、环境干扰大和障碍物多导致炮点分布不均匀等影响浅层成像的问题。本文以实际三维地震资料为例,针对城市三维地震资料的特点,采用了层析静校正、叠前多方法组合去噪、叠前数据规则化插值和精细动校拉伸切除等技术手段对城市三维地震资料进行处理,提高了浅层成像质量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雍凡
刘子龙
蒋正中
罗水余
刘建生
关键词 城市地下空间探测三维地震勘探数据处理浅层成像    
Abstract

The shallow 3D seismic reflection exploration has a large amount of data,accurate migration, and high lateral resolution.It can overcome some difficulties of the 2D seismic exploration in the city caused by the obstacles,such as obliquely intersection of the survey line with the structural strike,poor shallow structure detecting,and inaccurate fault locating.Therefore,shallow 3D seismic exploration can provide higher-quality data for urban underground space exploration,active fault detection,and geological disaster prospecting.However,urban 3D seismic exploration faces some challenges of shallow imaging,such as inhomogeneity of surface velocity,strong environmental noise,and uneven distribution of shot points caused by obstacles.To improve shallow imaging,tomographic static correction,pre-stack multi-method combination denoising,regularized interpolation of pre-stack data,and combined normal moveout strength cutting.The result shows our processing can improve the quality of shallow imaging of 3D seismic data.

Key wordsurban underground space exploration    3D seismic exploration    data processing    shallow imaging
收稿日期: 2021-01-13      修回日期: 2021-06-18      出版日期: 2021-10-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目(2018YFE0208300);中国地质科学院基本科研业务费专项经费资助(JYYWF20180303);物化探所中央财政科研项目结余资金项目(JY202108)
作者简介: 雍凡(1984-),男,2009年毕业于中国地质大学(武汉),主要从事地震勘探工作。Email: yfan@mail.cgs.gov.cn
引用本文:   
雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
YONG Fan, LIU Zi-Long, JIANG Zheng-Zhong, LUO Shui-Yu, LIU Jian-Sheng. The key technology of shallow imaging in urban 3D seismic data processing. Geophysical and Geochemical Exploration, 2021, 45(5): 1266-1274.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1019      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1266
Fig.1  处理流程
处理流程 主要参数
三维网格定义 面元大小:5 m×10 m
层析静校正
最终基准面高程为100 m;替换速度为2 000 m/s;直达波偏移距范围0~50 m;折射波最小偏移距为200 m,最大偏移距由程序自动计算;反演层数5层
滤波 叠前采用低截频率为15 Hz,高截为120 Hz的带通滤波参数;叠后采用25~100 Hz的带通滤波
单频噪声衰减 噪声频率50 Hz,回馈增益0.05,压制第一、第二谐波
异常振幅衰减
处理窗口长度300 ms;窗口重叠30%;最小处理频率0 Hz;最大处理频率200 Hz;处理频带宽度3 Hz;空间中值滤波宽度35道;最大插值半径3道;中值压制百分比10%
球面补偿 初至速度1 500 m/s
预测反褶积 预测步长8 ms;算子长度180 ms
动校拉伸切除 拉伸切除因子:1.2;最小切除偏移距:100 m
叠前插值 主方向辛格函数长度5;副方向辛格函数长度5;辛格频率平滑因子1.0
叠后时间偏移 方法:相移偏移;偏移速度:0.55 叠加速度
Table 1  主要处理参数
Fig.2  炮集静校正前(a)后(b)对比
Fig.3  单炮记录上的噪声(a)和对应的频谱(b)
Fig.4  叠前去噪前(a)后(b)炮记录对比
Fig.5  检波点和炮点布置
Fig.6  覆盖次数
Fig.7  插值前(a)后(b)叠加数据时间切片对比
Fig.8  插值前(a)后(b)叠加剖面对比
Fig.9  常规处理动校拉伸切除(a)与浅层保护处理动校拉伸切除(b)结果对比
[1] 徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016, 40(6):1103-1107.
[1] Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1103-1107.
[2] 张保卫, 沈鸿雁. 三分量地震散射波成像在天津蓟县城市活断层探测中的应用[J]. 物探与化探, 2014, 38(3):504-509.
[2] Zhang B W, Shen H Y. The application of three-component scattering wave seismic imaging in detecting city active fault in Ji district,Tianjin city[J]. Geophysical and Geochemical Exploration, 2014, 38(3):504-509.
[3] 邓起东, 徐锡伟, 张先康, 等. 城市活动断裂探测的方法和技术[J]. 地学前缘, 2003, 10(1):94-104.
[3] Deng Q D, Xu X W, Zhang X K, et al. Method and techniques for surveying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 2003, 10(1):94-104.
[4] 柴铭涛, 高景华. 城市活断层探测中的反射地震数据采集和处理技术[J]. 物探与化探, 2007, 31(4):365-369.
[4] Chai M T, Gao J H. Seismic data collection and processing in the active fault detectation of urban areas[J]. Geophysical and Geochemical Exploration, 2007, 31(4):365-369.
[5] 雍凡, 蒋正中, 罗水余, 等. 夏垫断裂北段浅部构造的高分辨率地震反射勘探研究[J]. 工程地球物理学报, 2014, 11(6):832-836.
[5] Yong F, Jiang Z Z, Luo S Y, et al. The seismic reflection study on high-resolution profile of shallow structure in North Part of Xiadian Fault[J]. Chinese Journal of Engineering Geophysics, 2014, 11(6):832-836.
[6] 李颜贵, 蒋正中, 刘子龙, 等. 地震纵波横波联合勘探方法寻找近地表第四系内隐伏断裂方法研究[J]. 物探化探计算技术, 2014, 36(6):692-699.
[6] Li Y G, Jiang Z Z, Liu Z L, et al. Joint P-wave and S-wave seismic reflection to investigate the quatermary blind fault near surface[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):692-699.
[7] 刘影, 沈月霞, 牛小军. 三维地震勘探在城市活断层精确定位中的意义[J]. 地震学报, 2012, 34(1):97-104.
[7] Liu Y, Shen Y X, Niu X J. Significance of 3D seismic exploration in urban active fault fine locating[J]. Acta Seismologica Sinica, 2012, 34(1):97-104.
[8] 夏训银, 左万宝, 张进国, 等. 三维地震在城市活断层探测中的应用[J]. 勘察科学技术, 2010(1):58-61.
[8] Xia X Y, Zuo W B, Zhang J G, et al. Application of three-dimensional seismic method in urban active fault detection[J]. Site Investigation Science and Technology, 2010(1):58-61.
[9] 王瑞芳, 吕进英. 城镇覆盖区野外三维地震勘探方法及效果[J]. 安徽地质, 2008, 18(3):210-211.
[9] Wang R F, Lyu J Y. Field three-dimension seismic exploration method and result for city cover area[J]. Geology of Anhui, 2008, 18(3):210-211.
[10] 张光德, 丁伟, 胡立新, 等. 城区三维地震观测系统设计及应用效果[J]. 石油地球物理勘探, 2006, 41(2):129-132.
[10] Zhang G D, Ding W, Hu L X, et al. Design of 3-D seismic geometry in urban area and applied effects[J]. Oil Geophysical Prospecting, 2006, 41(2):129-132.
[11] 周曲曼, 江宏, 姚一林, 等. JH城区三维地震勘探方法探讨[J]. 工程地球物理学报, 2011, 8(5):588-593.
[11] Zhou Q M, Jiang H, Yao Y L, et al. Three-dimensional seismic exploration method in JH city[J]. Chinese Journal of Engineering Geophysics, 2011, 8(5):588-593.
[12] 尹喜玲. 城市浅层三维地震勘探方法研究[D]. 杭州:浙江大学, 2010.
[12] Yin X L. Study on shallow 3-d seismic survey in urban engineering investigation[D]. Hangzhou:Zhejiang University, 2010.
[13] Heggland R, Nygaard E, Gallagher J W, et al. Techniques and experiences using exploration 3D seismic data to map drilling hazards[C]// Houston Texas:the Offshore Technology Conference, 1996.
[14] Mcconnell D R,Others. Optimizing deepwater well locations to reduce the risk of shallow-water-flow using high-resolution 2D and 3D seismic data[C]// Houston Texas:the Offshore Technology Conference, 2000.
[15] Posamentier H W. Seismic geomorphology:Imaging elements of depositional systems from shelf to deep basin using 3D seismic data:Implications for exploration and development[J]. Geological Society London Memoirs, 2004, 29(1):11-24.
doi: 10.1144/GSL.MEM.2004.029.01.02
[16] Trude K J. Kinematic indicators for shallow level Igneous Intrusions from 3D Seismic Data:Evidence of Flow Firection and Feeder Location[J]. Geological Society London Memoirs, 2004, 29(1):209-218.
doi: 10.1144/GSL.MEM.2004.029.01.20
[17] Schmelzbach C, Horstmeyer H, Juhlin C. Shallow 3D seismic-reflection imaging of fracture zones in crystalline rock[J]. Geophysics, 2007, 72(6):B149-B160.
doi: 10.1190/1.2787336
[18] Milkereit B, Berrer E K, King A R, et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits—A case history from the Sudbury basin,Canada[J]. Geophysics, 2000, 65(6):1890-1899.
doi: 10.1190/1.1444873
[19] Malehmir A, Bellefleur G. 3D seismic reflection imaging of volcanic-hosted massive sulfide deposits: Insights from reprocessing Halfmile Lake data,New Brunswick,Canada[J]. Geophysics, 2009, 74(6):B209-B219.
doi: 10.1190/1.3230495
[20] Buker F, Green A G, Horstmeyer H. 3-D high-resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments:Processing and interpretation[J]. Geophysics, 2000, 65(1):18-34.
doi: 10.1190/1.1444709
[21] Davies T A, Austin J A. High-resolution 3D seismic reflection and coring techniques applied to late Quaternary deposits on the New Jersey shelf[J]. Marine Geology, 1997, 143(1):137-149.
doi: 10.1016/S0025-3227(97)00094-7
[22] Bachrach R, Mukerji T. Fast 3D ultra shallow seismic reflection imaging using portable geophone mount[J]. Geophysical Research Letters, 2001, 28(1):45-48.
doi: 10.1029/2000GL012020
[23] Bachrach R, Dvorkin J, Nur A M. Seismic velocities and Poisson's ratio of shallow unconsolidated sands[J]. Geophysics, 2000, 65(2):559-564.
doi: 10.1190/1.1444751
[24] Bachrach R, Mukerji T. Portable dense geophone array for shallow and very shallow 3D seismic reflection surveying:Part 1-Data acquisition,quality control,and processing[J]. Geophysics, 2004, 69(6):1443-1455.
doi: 10.1190/1.1836818
[25] Bachrach R, Dvorkin J, Nur A. High-resolution shallow-seismic experiments in sand,Part II:Velocities in shallow unconsolidated sand[J]. Geophysics, 1998, 63(4):1234-1240.
doi: 10.1190/1.1444424
[26] Bachrach R, Nur A. High-resolution shallow-seismic experiments in sand,Part I:Water table,fluid flow,and saturation[J]. Geophysics, 1998, 63(4):1225-1233.
doi: 10.1190/1.1444423
[1] 岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[4] 孟庆奎, 周坚鑫, 舒晴, 高维, 徐光晶, 王晨阳. 理论模型分析卡尔曼滤波在航空全张量磁力梯度测量中的应用效果[J]. 物探与化探, 2021, 45(2): 473-479.
[5] 戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1): 107-111.
[6] 张虹, 周能, 邓肖丹, 王萌, 李行素. 国外航空重力测量与数据处理技术最新进展[J]. 物探与化探, 2019, 43(5): 1015-1022.
[7] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[8] 罗锋, 王冠鑫, 周锡华, 李行素. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(4): 872-880.
[9] 朱丹, 刘天佑, 杨宇山. 鄂东南地区岩体重磁异常场特征及找矿方向[J]. 物探与化探, 2017, 41(4): 587-593.
[10] 曹园园, 李新虎. 地球化学综合异常的圈定及找矿效果[J]. 物探与化探, 2017, 41(1): 58-64.
[11] 高国林, 邱崇涛, 王景丹, 沈正新, 李江坤. 无人机航放测量新技术的示范应用[J]. 物探与化探, 2016, 40(6): 1131-1137.
[12] 孔志召, 吴勇. 南方硬岩地区EH-资料处理的若干问题——以沙子江矿床为例[J]. 物探与化探, 2016, 40(4): 804-808.
[13] 苏世龙, 贺振华, 刘玉莲, 张辉, 谷延斌, 郭伟. 城区勘探中激发药量对地震数据品质的影响及处理对策——以中国东部某油田CY城区为例[J]. 物探与化探, 2015, 39(6): 1160-1166.
[14] 薛建, 梁文婧, 刘立家, 刘明辉, 申文斌, 黄茜, 杨卫明. 探地雷达低频天线在工程勘探中的应用[J]. 物探与化探, 2015, 39(6): 1251-1256.
[15] 王磊, 韩润生, 王加昇. 地球化学勘查的新技术及发展趋势[J]. 物探与化探, 2015, 39(4): 686-690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com