Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 473-479    DOI: 10.11720/wtyht.2021.1307
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
理论模型分析卡尔曼滤波在航空全张量磁力梯度测量中的应用效果
孟庆奎1,2(), 周坚鑫1,2, 舒晴1,2, 高维2, 徐光晶2, 王晨阳2
1.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
2.中国自然资源航空物探遥感中心,北京 100083
Application effect of Kalman filter in airborne full tensor magnetic gradient measurement based on theoretical model
MENG Qing-Kui1,2(), ZHOU Jian-Xin1,2, SHU Qing1,2, GAO Wei2, XU Guang-Jing2, WANG Chen-Yang2
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(1938 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

航空全张量磁力梯度测量数据中包含非常复杂的运动噪声,在频谱图中从低频至高频均有分布,并以白噪声为主,如何有效压制运动噪声是一个较大的挑战。传统的数字滤波只能滤除指定频段的噪声,对于混叠在全张量磁力梯度有用信号中的噪声不能有效分离。鉴于卡尔曼滤波是一种快速、高效和实时的最优估计方法,笔者将其应用到航空全张量磁力梯度数据处理中,搭建合理的状态方程和观测方程,通过模型实验验证了方法的有效性,结果显示全区噪声衰减因子优于0.92,即能够去除92%以上噪声成分,全区均方误差优于10 pT/m,可应用于航空全张量磁力梯度数据实时处理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟庆奎
周坚鑫
舒晴
高维
徐光晶
王晨阳
关键词 全张量磁力梯度卡尔曼滤波白噪声数据处理    
Abstract

The aero full tensor magnetic gradient data contain complex motion noise, which is distributed from low frequency to high frequency in the spectrum, and is mainly white noise. So, how to effectively suppress the motion noise is a great challenge. The traditional digital filtering can only filter the noise with the specified frequency band, but it can not effectively separate the noise mixed in the full tensor magnetic gradient useful signal. In view of the fact that Kalman filter is a fast, efficient and real-time optimization estimation method, the authors applied it to the aero magnetic full tensor gradient data processing, and built the state equation and observation equation reasonably. Model test proves that the method is effective and can be applied to real-time processing of aeromagnetic full tensor gradient data.

Key wordsfull tensor magnetic gradient    Kalman filter    white noise    data processing
收稿日期: 2020-06-16      修回日期: 2020-10-07      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:航空物探遥感中心青年创新基金(2020YFL16);国家重点研发计划(2017YFC0601601)
作者简介: 孟庆奎(1987-),男,硕士,工程师,主要从事应用地球物理方法研究和数据处理解释工作。Email: qingkui_meng@163.com
引用本文:   
孟庆奎, 周坚鑫, 舒晴, 高维, 徐光晶, 王晨阳. 理论模型分析卡尔曼滤波在航空全张量磁力梯度测量中的应用效果[J]. 物探与化探, 2021, 45(2): 473-479.
MENG Qing-Kui, ZHOU Jian-Xin, SHU Qing, GAO Wei, XU Guang-Jing, WANG Chen-Yang. Application effect of Kalman filter in airborne full tensor magnetic gradient measurement based on theoretical model. Geophysical and Geochemical Exploration, 2021, 45(2): 473-479.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1307      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/473
Fig.1  球体模型全张量磁力梯度
Fig.2  加噪球体模型全张量磁力梯度
Fig.3  滤波后全张量磁力梯度立体图
Fig.4  BxxByyBzz滤波前后对比(剖面Y=500 m)
Fig.5  BxyBxzByz滤波前后对比(剖面Y=500 m)
Fig.6  全区噪声衰减因子及全区均方误差
Bxx Byy Bzz Bxy Bxz Byz
噪声衰减因子 0.9212 0.9668 0.9613 0.9413 0.9560 0.9593
均方误差/(pT·m-1) 8.5 5.7 6.7 7.5 6.6 6.2
Table 1  典型剖面(Y=500 m)卡尔曼滤波效果定量统计
[1] Gamey T J, Doll W E, Beard L P. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[J]. SEG Technical Program Expanded Abstracts. SEG, 2004, 798-801.
[2] Schmidt P W, Clark D A. The magnetic gradient tensor: It̓s properties and uses in source characterization[J] . The Leading Edge, 2006,25(1):75-78.
doi: 10.1190/1.2164759
[3] Stolz R, Zakosarenko V, Schulz M, et al. Magnetic full tensor SQUID gradiometer system for geophysical applications[J]. The Leading Edge, 2006,25(2):178-180.
[4] 申茂冬. 高温超导全张量磁梯度测量技术研究[D]. 长春:吉林大学, 2017.
[4] Shen M D. Study on technology for high temperature superconducting full tensor magnetic gradient measurement[D]. Changchun: Jilin University, 2017.
[5] 申茂冬, 程德福, 安战峰, 等. 五棱台式全张量磁梯度探头侧面倾角优化方法[J]. 吉林大学学报:工学版, 2016,46(5):1732-1738.
[5] Shen M D, Chen F D, An Z F, et al. Optimization of slanting surfaces of five-sided pyramidal full tensor magnetic gradient probe[J]. Journal of Jilin University:Engineering and Technology Edition, 2016,46(5):1732-1738.
[6] 伍俊, 荣亮亮, 孔祥燕, 等. 基于Cortex-M3的航空超导磁测量平台振动监测仪[J]. 仪表技术与传感器, 2016,(1):22-25.
[6] Wu J, Rong L L, Kong X X, et al. Vibration monitor based on cortex-m3 for aviation superconducting magnetic measurement platform[J]. Instrument Technique and Sensor, 2016,(1):22-25.
[7] 伍俊, 邱隆清, 孔祥燕, 等. 基于GPS同步的新型低温超导磁力仪[J]. 传感器技术学报, 2015,28(9):1347-1353.
[7] Wu J, Qiu L Q, Kong X X, et al. A novel low temperature SQUID magnetometer based on GPS synchronization[J]. Chinese Journal of Sensors and Actuators, 2015,28(9):1347-1353.
[8] 王士良, 邱隆清, 王永良, 等. 航空超导全张量磁梯度仪的串扰研究[J]. 低温物理学报, 2017,39(1):36-40.
[8] Wang S L, Qiu L Q, Wang Y L, et al. Study on Crosstalk of an airborne magnetic full tensor SUQID gradiometer system[J]. Chinese Journal of Low Temperature Physics, 2017,39(1):36-40.
[9] 张光, 张英堂, 尹刚, 等. 一种磁张量探测系统载体的磁张量补偿方法[J]. 地球物理学报, 2016,59(1):311-317.
[9] Zhang G, Zhang Y T, Yin G, et al. Magnetic tensor compensation method for the carrier of the magnetic tensordetection system[J]. Chinese J. Geophys., 2016,59(1):311-317.
[10] 张兴东. 卡尔曼滤波在全张量磁梯度数据处理中的应用[D]. 北京:中国地质大学(北京), 2015.
[10] Zhang X D. Application of Kalman Filtering in the magnetic full tensor gradiometer data processing [D]. Beijing: China University of Geosciences(Beijing), 2015.
[11] 舒晴, 马国庆, 刘财, 等. 全张量磁梯度数据解释的均衡边界识别及深度成像技术[J]. 地球物理学报, 2018,61(4):1539-1548.
[11] Shu Q, Ma G Q, Liu C, et al. Balanced edge detection and depth imaging technique for the interpretation of full tensor magnetic gradient data[J]. Chinese J. Geophys., 2018,61(4):1539-1548.
[12] 骆遥, 姚长利. 长方体磁场及其梯度无解析奇点表达式理论研究. 石油地球物理勘探, 2007,42(6):714-719.
[12] Luo Y, Yao C L. Theoretical study on cuboid magnetic field and gradient expression without singular point[J]. Oil Geophysical Prospecting, 2007,42(6):714-719.
[13] 钟炀, 管彦武, 石甲强, 等. 利用IGRF 模型计算全张量地磁梯度[J]. 物探与化探, 2020,44(3):582-590.
[13] Zhong Y, Guan Y W, Shi J Q, et al. The calculation method of full tensor geomagnetic gradient based on IGRF model[J]. Geophysical and Geochemical Exploration, 2020,44(3):582-590.
[14] 钟炀, 管彦武, 石甲强, 等. 长方体全张量磁梯度的两种正演公式对比[J]. 世界地质, 2019,38(4):1073-1081,1090.
[14] Zhong Y, Guan Y W, Shi J Q, et al. Comparison of two forward modeling formulas for full tensor magnetic gradient of cuboid[J]. Global Geology, 2019,38(4):1073-1081,1090.
[15] 周德文, 孟庆奎, 杨怡, 等. 航磁全轴梯度异常特征研究[J]. 物探与化探, 2018,42(3):583-588.
[15] Zhou D W, Meng Q K, Yang Y, et al. Study on characteristics of three axis airborne magnetic gradient anomaly[J]. Geophysical and Geochemical Exploration, 2018,42(3):583-588.
[16] Ji S X, Zhang H, Wang Y F, et al. Three dimensional inversion of full magnetic gradient tensor data based on hybrid regularization method[J]. Geophysical Prospecting, 2019,67(1):226-261.
[17] 吴招才. 磁力梯度张量技术及其应用研究[D]. 武汉:中国地质大学(武汉), 2008.
[17] Wu Z C. Magnetic gradient tensor technology and its application[D]. Wuhan: China University of Geosciences(Wuhan), 2008.
[18] 郑婷. 全张量 SQUID磁梯度计在航空磁测方面的应用研究[J]. 超导技术, 2015,43(10):41-44.
[18] Zheng T. Research on application of airborne magnetometry using full tensor squid gradiometer[J]. Superconductivity, 2015,43(10):41-44.
[19] Luo Y, Wu M P, Wang P, et al. Full magnetic gradient tensor form triaxial aero magnetic gradient measurements: Calculation and application[J]. Applied Geophysics, 2015,12(3):283-291.
[20] 孟庆奎, 周德文, 高维, 等. 国内外航磁补偿技术历史与展望[J]. 物探与化探, 2017,41(4):694-699.
[20] Meng Q K, Zhou D W, Gao W, et al. History and prospects of aeromagnetic compensation technologies used in China and abroad[J]. Geophysical and Geochemical Exploration, 2017,41(4):694-699.
[21] 王静波, 熊盛青, 郭志宏, 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012,27(4):1717-1722.
[21] Wang J B, Xiong S Q, Guo Z H, et al. Application of Kalman filtering smoothing technique for aeronautical gravity data[J]. Progressin Geophysics, 2012,27(4):1717-1722.
[22] 蔡体菁, 周薇, 鞠玲玲. 平台式重力仪测量数据的卡尔曼滤波处理[J]. 中国惯性技术学报, 2015,23(6):718-720.
[22] Cai T J, Zhou W, Ju L L. Kalman filter processing of platform gravimeter measurement data[J]. Chinese Journal of Inertial Technology, 2015,23(6):718-720.
[23] 罗锋, 王冠鑫, 周锡华, 等. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019,43(4):872-880.
[23] Luo F, Wang G X, Zhou X H, et al. Research and implementation of data processing method for the three-axis stabilized platform airborne gravity measuring system[J]. Geophysical and Geochemical Exploration, 2019,43(4):872-880.
[24] Grewal M S, Andrews A P. Kalman filtering theory and practice using MATLAB[M]. New York: Wiley, 2008: 133-138.
[25] Pajot G, Viron O D, Diament M, et al. Noise reduction through joint processing of gravity and gravity gradient data[J]. Geophysics, 2008,73(3):I23.
[1] 岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
[4] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[5] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[6] 戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1): 107-111.
[7] 张虹, 周能, 邓肖丹, 王萌, 李行素. 国外航空重力测量与数据处理技术最新进展[J]. 物探与化探, 2019, 43(5): 1015-1022.
[8] 罗锋, 王冠鑫, 周锡华, 李行素. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(4): 872-880.
[9] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[10] 朱丹, 刘天佑, 杨宇山. 鄂东南地区岩体重磁异常场特征及找矿方向[J]. 物探与化探, 2017, 41(4): 587-593.
[11] 曹园园, 李新虎. 地球化学综合异常的圈定及找矿效果[J]. 物探与化探, 2017, 41(1): 58-64.
[12] 高国林, 邱崇涛, 王景丹, 沈正新, 李江坤. 无人机航放测量新技术的示范应用[J]. 物探与化探, 2016, 40(6): 1131-1137.
[13] 孔志召, 吴勇. 南方硬岩地区EH-资料处理的若干问题——以沙子江矿床为例[J]. 物探与化探, 2016, 40(4): 804-808.
[14] 李中. 基于几何稳定工作状态的陀螺仪标定方法[J]. 物探与化探, 2015, 39(S1): 28-32.
[15] 郑崴, 张贵宾, 陈涛, 索奎, 李瑞. Sage自适应滤波在航空重力数据处理的应用[J]. 物探与化探, 2015, 39(S1): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com