Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 65-72    DOI: 10.11720/wtyht.2023.1209
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证
韩元红1(), 申小龙1,2, 李兵3, 徐德才4, 贾志刚2, 吴大林4, 王伟2, 吕俊3
1.自然资源部 煤炭资源勘查与综合利用重点实验室,陕西 西安 710021
2.陕西省煤田地质勘查研究院有限公司,陕西 西安 710021
3.陕西中煤新能源公司,陕西 西安 710054
4.陕西省煤田地质物测有限公司,陕西 西安 710005
Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration
HAN Yuan-Hong1(), SHEN Xiao-Long1,2, LI Bing3, XU De-Cai4, JIA Zhi-Gang2, WU Da-Lin4, WANG Wei2, Lyu Jun3
1. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, China
2. Shaanxi Coal Geology Investigation Research Institute Co., Ltd., Xi'an 710021, China
3. Shaanxi Zhongmei New Energy Co., Ltd., Xi'an 710054, China
4. Shaanxi Provincial Coal Geophysical Prospecting, Surveying and Mapping Co.Ltd. Xi'an 710005,China
全文: PDF(7822 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

“双碳”目标背景下,地热能作为广泛分布的绿色清洁能源具有广阔的利用前景。构造裂隙型地热水因出水量大、易回灌等优势,成为当前水热型地热能开发利用的重要类型。运用区域综合物探方法,系统分析关中西部眉县城区区域构造、地层岩性、储水空间及富水性,指导热水井靶区预测和井位布局。结果表明,目标区发育3条隐伏断层,其中富水性好、规模较大的2条断层可以作为靶区断层,在此基础上将地热井布局于断层上盘靠近断层预测线的位置,垂向上沿着断层倾向方向钻穿基岩面风化带,结合断层和基岩面埋深等实际地质条件,该区地热井平均钻进基岩面以下500 m。钻井结果显示眉县地区二元结构热储发育,即新近系碎屑岩孔隙水热储和基岩裂隙水热储,完钻的8口地热井中7口井出水量超过100 m3/h,出水主要为基岩构造裂隙水,另1口井出水量较小,推测未取得基岩构造裂隙水,出水主要为新近系碎屑岩孔隙水。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩元红
申小龙
李兵
徐德才
贾志刚
吴大林
王伟
吕俊
关键词 水热型地热能热储类型靶区预测钻探验证关中眉县    
Abstract

To achieve the goals of peak carbon dioxide emissions and carbon neutrality, geothermal energy has great prospects for utilization as a type of widely distributed green and clean energy. The tectonic fissure-hosted geothermal water is regarded as an important type of hydrothermal energy for development and utilization because of its high water yield and easy reinjection. This study systematically analyzed the regional structures, formation lithology, water storage space, and water yield property of the urban area of Meixian County in the west of Guanzhong Plain through the regional integrated geophysical exploration, aiming to guide the target area prediction and well placement of geothermal wells. The results show that three concealed faults are present in the target area, of which two faults with favorable water yield property and large scale can be regarded as the faults of the target area. Based on this, geothermal wells were arranged near the fault prediction lines on the hanging wall of the faults, and the weathered zones of the bedrock surfaces were penetrated vertically along the dip angles of the faults. Given the actual geological conditions, such as the faults and the burial depth of the bedrock surface, the geothermal wells had an average drilling depth of 500 m from the bedrock surface. The drilling results show that there are dual-structure thermal reservoirs in the target area, including thermal reservoirs of pore water in the Neogene clastics and those of the bedrock fissure water. Among the eight geothermal wells, seven wells have a water yield of more than 100 m?/h, which mainly originates from the bedrock fissure water, and only one well has a relatively low water yield, which is mainly sourced from the pore water in the Neogene clastics.

Key wordshydrothermal energy    thermal reservoir type    target area prediction    drilling verification    Meixian County in Guanzhong Plain
收稿日期: 2022-05-04      修回日期: 2022-06-30      出版日期: 2023-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42102203);陕西省自然科学基金项目(2021J LM-14)
作者简介: 韩元红(1988-),女,博士,高级工程师,2015年毕业于中国科学院大学,目前从事地热及伴生资源相关地质研究工作。Email:hanyuanhong222@163.com
引用本文:   
韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证[J]. 物探与化探, 2023, 47(1): 65-72.
HAN Yuan-Hong, SHEN Xiao-Long, LI Bing, XU De-Cai, JIA Zhi-Gang, WU Da-Lin, WANG Wei, Lyu Jun. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration. Geophysical and Geochemical Exploration, 2023, 47(1): 65-72.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1209      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/65
Fig.1  区域地质背景
a—渭河盆地构造单元及主要断层;b—眉县区域构造单元;c—眉县区域地层
Fig.2  工作区物探工作位置
Fig.3  断层在二维地震剖面上的反应
a—D2测线;b—D3测线;c—D4测线
Fig.4  断层在音频大地电磁(AMT)剖面上的反应
a—1-1'测线;b—2-2'测线;c—3-3'测线;d—4-4'测线
Fig.5  断层在静电α卡射线剖面上的反应
Fig.6  综合物探推断断层及钻探布孔
Fig.7  新近系底界标高等值线
序号 孔号 孔深/m 取水深度/m 水量/(m3·h-1) 水温/℃
1 C101 1071 623 ~1071 181.0 48.5
2 C201 1555 803~1555 129.6 42.5
3 C202 1405 604~1405 207.2 46.5
4 C203 1217 711 ~1217 183.7 53.0
5 G102 1370 551 ~1370 186.4 41.5
6 G203 1301 470~1301 236.1 45.5
7 G101 1427 618 ~1400 207.2 42.0
8 G202 1590 610-1350 61.4 41.0
平均 / 1367 / 174.1 48.5
Table 1  各井位出水量及温度
[1] 周琛杰. 高密度电法与AMT在断裂构造调查中的综合应用[J]. 工程地球物理学报, 2017, 14(3):300-307.
[1] Zhou C J. Application of high-density resistivity method and AMT to the investigation of fault structure[J]. Chinese Journal of Engineering Geophysics, 2017, 14(3):300-307.
[2] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.
[2] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologoca Sinica, 2020, 94(7):1981-1990.
[3] 邱辉, 朱育坤, 李朋. 广东河源市黄村地热田地热地质特征及地热流体化学特征[J]. 地质与勘探, 2021, 57(6):1391-1400.
[3] Qiu H, Zhu Y K, Li P. Characteristics of geology and hydrochemistry of the Huangcun geothermal field in Heyuan City,Guangdong Province[J]. Geology and Exploration, 2021, 57(6):1391-1400.
[4] 董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3):666-676.
[4] Dong Y X, Huang H X, Ren L, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin:A case of the Caofeidian geothermal heating project in Tangshan,China[J]. Petroleum Exploration and Development, 2021, 48(3):666-676.
[5] 杨询昌, 康凤新, 王学鹏, 等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理——鲁北馆陶组热储典型案例[J]. 地质学报, 2019, 93(3):738-748.
[5] Yang X C, Kang F X, Wang X P, et al. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water:A case study of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica, 2019, 93(3):738-750.
[6] 李弘, 俞建宝, 吕慧, 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2):242-248.
[6] Li H, Yu J B, Lyu H, et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017, 41(2):242-248.
[7] 张攀, 陈金国, 傅清心. 英罗地区地热资源成因分析及勘查靶区预测[J]. 资源环境与工程, 2018, 32(S):44-47.
[7] Zhang P, Chen J G, Fu Q X. Genetic analysis of geothermal resources and prediction of exploration targets in Yingluo Area[J]. Resources Environment & Engineering, 2018, 32(S):44-47.
[8] Zheng X, Si G, Xia B. The sustainable development of geothermal resources in China[J]. Transactions-Geothermal Resources Council, 2005, 29:321-323.
[9] Cheng W Q, Lin J W, Tang Y X, et al. Geothermal Reinjection in Tianjin,China[C]// Proceedings World Geothermal Congress,Bali,Indonesia, 2010:2305.
[10] 任战利, 陈玉林, 李晓辉, 等. 西安市地热资源可持续利用的回灌试验研究[C]// 中国地球物理学会第二十七届年会论文集, 2011.
[10] Ren Z L, Chen Y L, Li X H, et al. Geothermal reinjection test study on sustainable utilization of Geothermal-energy resources in xi’an[C]// The 27th Annual Meeting of Chinese Geophysical Society, 2011.
[11] Duan Z, Pang Z, Wang X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin,China[J]. Geothermics, 2011, 40(2):125-135.
doi: 10.1016/j.geothermics.2011.02.001
[12] 王兴. 渭河盆地地热资源赋存与开发[M]. 西安: 陕西科学技术出版社, 2005.
[12] Wang X. Occurrence and development of geothermal resources in Weihe Basin[M]. Xi’an: Shaanxi Science and Technology Press, 2005.
[13] 穆根胥, 李峰, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016:39-46.
[13] Mu G X, Li F, Yan W Z, et al. Occurrence law and key technology of development and utilization of geothermal resources in Guanzhong Basin[M]. Beijing: Geological Publishing House, 2016:39-46.
[14] 张育平, 黄少鹏, 杨甫, 等. 关中盆地西安凹陷深层地热U型对接井地温特征[J]. 中国煤炭地质, 2019, 31(6):54-59.
[14] Zhang Y P, Huang S P, Yang F, et al. Geothermal features of two deep U-shape downhole heat exchangers in the Xi'an Depression,Guanzhong Basin[J]. Coal Geology of China, 2019, 31(6):54-59.
[15] 范基姣. 关中盆地地下热水循环模式及可更新性研究[D]. 西安: 长安大学, 2006.
[15] Fan J J. Study on groundwater circulation model and its renewability in Guanzhong Basin[D]. Xi'an: Chang'an University, 2006.
[16] 马致远, 郑会菊, 郑磊. 关中盆地深层热储流体锶同位素演化及其指示意义[J]. 水文地质工程地质, 2015, 42(1):154-160.
[16] Ma Z Y, Zheng H J, Zheng L. Evolution and instruction of the strontium isotope in the deep geothermal water in the Guanzhong basin[J]. Hydrogeology & Engineering Geology, 2015, 42(1):154-160.
[17] 马致远, 吴敏, 郑会菊, 等. 对关中盆地腹部深层地下热水δ18O富集主控因素的再认识[J]. 地质通报, 2018, 37(Z1):487-495.
[17] Ma Z Y, Wu M, Zheng H J, et al. A re-recognition of the main controlling factors for δ18O enrichment in deep geothermal water of Guanzhong Basin[J]. Geological Bulletin of China, 2018, 37(Z1):487-495.
[18] 贾旭兵. 关中盆地地下热水的可更新性与回灌问题研究[D]. 西安: 长安大学, 2009.
[18] Jia X B. Study on the renewability and recharge of geothermal water in Guanzhong Basin[D]. Xi'an: Chang'an University, 2009.
[19] 马致远, 侯晨, 席临平. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质, 2013, 40(5):133-139.
[19] Ma Z Y, Hou C, Xi L P. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & Engineering Geology, 2013, 40(5):133-139.
[20] 夏勇. 渭河盆地新生代沉积特征及与构造的关系[D]. 西安: 长安大学, 2007.
[20] Xia Y. Sedimentary characteristics of Cenozoic strata in Weihe Basin and its relationship with tectonics[D]. Xi'an: Chang'an University, 2007.
[21] 权新昌. 渭河盆地断裂构造研究[J]. 中国煤田地质, 2005, 17 (3):1-4.
[21] Quan X C. Study on fault structure in Weihe Basin[J]. Coalfield Geology in China, 2005, 17 (3):1-4.
[22] 李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西安: 西北大学, 2017.
[22] Li Z C. Lithofacies palaeogeography and environmental evolution of Cenozoic Era in Weihe Basin[D]. Xi'an: Northwest University, 2017.
[23] 任占利, 刘润川, 任文波, 等. 渭河盆地地温场分布规律及其控制因素[J]. 地质学报, 2020, 94(7):1938-1949.
[23] Ren Z L, Liu R C, Ren W B, et al. Distribution of geothermal field and its controlling factors in the Weihe basin[J]. Aata Geologica Sinica, 2020, 94(7):1938-1949.
[24] 何展翔, 王永涛, 刘云祥, 等. 综合物探技术新进展及应用[J]. 石油地球物理勘探, 2005, 40(1):108-112.
[24] He Z X, Wang Y T, Liu Y X, et al. New progress and application of integrated geophysical prospecting technology[J]. Petroleum Geophysical Exploration, 2005, 40(1):108-112.
[25] 陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
[25] Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
[26] 刘新号. 基于蓄水构造类型的山区综合找水技术[J]. 水文地质工程地质, 2011, 38(6):8-12.
[26] Liu X H. Integrated techniques of locating groundwater in mountain areas based on groundwater-impounding types[J]. Hydrogeology & Engineering Geology, 2011, 38(6):8-12.
[27] 伍洲云, 徐宁玲, 范迪富. 带状(构造裂隙型)热储地热单井保护范围确定方法探讨[J]. 水文地质工程地质, 2014, 41(1):149-152.
[27] Wu Z Y, Xu N L, Fang D F. Discussions on determining the protective scope of a geothermal well in zoned (tectonic fissure type)reservoir[J]. Hydrogeology & Engineering Geology, 2014, 41(1):149-152.
[28] 孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017, 41(1):52-57.
[28] Sun Z R, Yang D C, Zhao X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1):52-57.
[1] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[2] 相丽娜, 王志宏, 孙栋华, 伍显红, 魏永强. 航电在高山区找矿快速突破中的应用[J]. 物探与化探, 2018, 42(2): 225-233.
[3] 胡宁, 张良红, 高海发. 综合物探方法在嘉兴地热勘查中的应用[J]. 物探与化探, 2011, 35(3): 319-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com