Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 766-774    DOI: 10.11720/wtyht.2023.1241
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习松辽盆地大地热流计算与特征分析
宫明旭1(), 白利舸2, 曾昭发2(), 吴丰收1
1.中船勘察设计研究院有限公司,上海 200063
2.吉林大学 地球探测科学与技术学院,吉林 长春 130026
Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin
GONG Ming-Xu1(), BAI Li-Ge2, ZENG Zhao-Fa2(), WU Feng-Shou1
1. China Ship Survey and Design Institute Co.,Ltd.,Shanghai 200063,China
2. College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China
全文: PDF(6079 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大地热流是地球内部热量在地表的直接显示,对地热资源评估具有极高的参考价值,由于传统利用钻井技术的热流测定方法既昂贵又困难,至今松辽盆地仍未能实现高质量、高分辨率的大地热流测量。机器学习是一种用于数据分析的技术,它可以识别数据中的模式并将其用于自动计算未知数据。本文引入机器学习方法来计算区域大地热流。这项研究基于全球大地热流实测数据与地质构造数据,首先采用了Kriging回归算法和机器学习算法计算某已知热流分布区域的大地热流,并计算了均方根误差和相关系数,表明机器学习算法能获得误差更小、相关度更高的结果。随后使用机器学习方法计算了松辽盆地的大地热流值。计算结果显示盆地中部大地热流最高,以大庆、松原之间的区域为中心呈环状向外逐渐变低,中心区域大地热流超过80 mV/m2。该结果与区域实测地温梯度测量结果具有良好一致性,为进一步分析松辽盆地地热资源分布规律提供参考。最后,利用Sobol方法进行地质特征灵敏度分析,量化各参数的影响。本文的研究表明机器学习方法在大地热流值计算方面具有较高的研究和应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫明旭
白利舸
曾昭发
吴丰收
关键词 松辽盆地大地热流机器学习地热资源分布    
Abstract

Terrestrial heat flow has a high reference value for the evaluation of geothermal resources since it can directly indicate the Earth's internal heat on the surface.However,no high-quality and high-resolution terrestrial heat flow measurements have been conducted in the Songliao Basin due to costly and difficult conventional heat flow measurements based on the drilling technology.Machine learning,as a technology for data analysis,can identify patterns in data and utilize these patterns to automatically calculate unknown data.This study calculated the regional terrestrial heat flow using the machine learning method.Based on the measured data of global terrestrial heat flow and the geological structure data,both the Kriging regression algorithm and the machine learning algorithm were used to calculate the terrestrial heat flow in a known heat flow distribution area,as well as the root mean square error and the correlation coefficient.The machine learning algorithm yielded results with a smaller error and a higher correlation.Then,the terrestrial heat flow in the Songliao Basin was calculated using the machine learning method.As revealed by the calculation results,the terrestrial heat flow is the highest (more than 80 mWm-2) in the Songliao basin and gradually decreases outward in a circular pattern centered on the area between Daqing and Songyuan.The results are highly consistent with the measured results of the regional geothermal gradient,providing a reference for further analysis of the distribution patterns of geothermal resources in the Songliao Basin.Finally,the sensitivity of geological characteristics was analyzed using the Sobol method to quantify the effects of various parameters.This study verifies that the machine learning method has a high research and application value in the calculation of terrestrial heat flow.

Key wordsSongliao Basin    terrestrial heat flow    machine learning    distribution of geothermal resources
收稿日期: 2022-05-20      修回日期: 2023-04-07      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“深部超临界热储流体—岩石综合电性特征与电磁响应研究”(42074119)
通讯作者: 曾昭发(1966-),男,广西全州人,教授,博士生导师,博士,研究方向为应用地球物理。Email:zengzf@jlu.edu.cn
作者简介: 宫明旭(1993-),男,硕士研究生,从事地球物理探测与评价的研究工作。Email:1209686360@qq.com
引用本文:   
宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
GONG Ming-Xu, BAI Li-Ge, ZENG Zhao-Fa, WU Feng-Shou. Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin. Geophysical and Geochemical Exploration, 2023, 47(3): 766-774.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1241      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/766
Fig.1  神经网络分类
变量名称 数据量 参考文献
地表地形 64800 Amante and Eakins(2009)[19]
莫霍面深度 64800 Reguzzoni et al.(2013)[20];
刘卓(2019)[13]
岩石圈—软流圈边界 64800 Pasyanos et al.(2014)[21] ;
刘子婧(2016)[14]
大陆岩石圈年龄 5365 Poupinet and Shapiro(2009)[22]
布格重力异常 64800 Balmino et al.(2012)[23]
地壳厚度 64800 Laske et al.(2013)[24];
王开燕等(2015)[15]
上地幔密度异常 64800 Kaban et al.(2004)[25]
磁异常 64800 Maus et al.(2013)[26]
上、下地壳厚度 64800 Bassin(2000)[27]
生热率 64800 USGS(2016)[28]
上地幔速度结构 64800 Shapiro and Ritzwoller(2002)[29]
岩石类型 64800 Hartmann and Moosdorf(2012)[30]
到洋脊的距离 64800 Coffin et al.(1998)[31]
(UTIG Plates Project)
Table 1  全球参数变量
Fig.2  DNN架构
Fig.3  工作流程
Fig.4  全球大地热流值(黑框中为选取区域,据Gosnold W[33]修改)
Fig.5  某区域实测大地热流
Fig.6  某区域热流Kriging算法和机器学习方法计算结果图(左)及其相关性(右)
Fig.7  松辽盆地大地热流计算结果
Fig.8  松辽盆地地温梯度实测等值线[36]
Fig.9  全球地质特征参数对热流的相对敏感度
[1] Lerche I, Yarzab R F, Kendall C G. Determination of Paleoheat flux from vitrinite reflectance data:REPLY[J]. AAPG Bulletin, 1985, 68(11):1704-1717.
[2] 庞雄奇, 陈章明, 陈发景. 非线性变化古热流回剥模拟计算方法探讨[J]. 大庆石油学院学报, 1994, 18(2):9-16.
[2] Pang X Q, Chen Z M, Chen F J. Discussion on the calculation method of nonlinear variation paleoheat flow stripping simulation[J]. Journal of Daqing Petroleum Institute, 1994, 18(2):9-16.
[3] 魏东平, 石耀霖, 汤懋苍, 等. 利用气象地温资料反演大地热流[J]. 地球物理学报, 1992, 35(6):733-739.
[3] Wei D P, Shi Y L, Tang M C, et al. Retrieving terrestrial heat flow from meteorological and geothermal data[J]. Chinese Journal of Geophysics, 1992, 35(6):733-739.
[4] 董文杰, 汤懋苍. 用气象站地温资料计算多年平均土壤热流的初步结果[J]. 高原气象, 1992, 11(2):115-125.
[4] Dong W J, Tang M C. Preliminary results of calculating multi-year average soil heat flow using ground temperature data from meteorological stations[J]. Plateau Meteorology, 1992, 11(2):115-125.
[5] Fox M C, Purucker M E, Olsen N. Inferring magnetic crustal thickness and geothermal heat flux from crustal magnetic field models[R]. Danish Meteorological Institute, 2009.
[6] Martos Y M, Catalan M, Jordan T A, et al. Heat flux distribution of Antarctica Unveiled[J]. Geophysical Research Letters, 2017, 44(22):11417-11426.
doi: 10.1002/grl.v44.22
[7] 唐晗晗, 郭良辉, 方圆. 青藏高原东南缘热流估算及与地震活动相关性分析[J]. 地球物理学报, 2020, 63(3):1056-1069.
[7] Tang H H, Guo L H, Fang Y. Estimation of heat flow in the southeast margin of the Qinghai-Tibet Plateau and correlation analysis with seismic activity[J]. Chinese Journal of Geophysics, 2020, 63(3):1056-1069.
[8] Goutorbe B, Poort J, Lucazeau F, et al. Global heat flow trends resolved from multiple geological and geophysical proxies[J]. Geophysical Journal International, 2011, 187(3):1405-1419.
doi: 10.1111/j.1365-246X.2011.05228.x
[9] Rezvanbehbahani S, Stearns L A, Kadivar A, et al. Predicting the geothermal heat flux in Greenland:A machine learning approach[J]. Geophysical Research Letters, 2017, 44(24):12271-12279.
[10] Lucazeau F. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochemistry,Geophysics,Geosystems, 2019, 20(8):4001-4024.
doi: 10.1029/2019GC008389
[11] Haklidir T. Prediction of reservoir temperatures using hydrogeochemical data,Western Anatolia geothermal systems(Turkey):A machine learning approach[J]. Natural Resources Research, 2020, 29(4):1-14.
doi: 10.1007/s11053-020-09627-1
[12] Lösing M, Ebbing J. Predicting geothermal heat flow in Antarctica with a machine learning approach[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(6):1-16.
[13] 刘卓. 基于变物性约束的重磁界面反演研究与应用[D]. 长春: 吉林大学, 2019.
[13] Liu Z. Research and application of gravity and magnetic interface inversion based on variable physical property constraints[D]. Changchun: Jilin University, 2019.
[14] 刘子婧. 利用S波接收函数研究中国东北地区LAB深度[D]. 北京: 中国石油大学(北京), 2016.
[14] Liu Z J. Using S-wave receiver function to study LAB depth in Northeast China[D]. Beijing: China University of Petroleum(Beijing), 2016.
[15] 王开燕, 刘丹, 柳俊茹, 等. 东北地区地壳结构研究[J]. 地球物理学进展, 2015, 30(1):61-69.
[15] Wang K Y, Liu D, Liu J R, et al. Research on crustal structure in Northeast China[J]. Progress in Geophysics, 2015, 30(1):61-69.
[16] Samuel A. Some studies in machine learning using the game of checkers[J]. IBM Journal of Research and Development, 1959, 3(3):210-229.
doi: 10.1147/rd.33.0210
[17] Russell S, Norvig P. Artificial intelligence:A modern approach,Third Edition[J]. Artificial Intelligence, 2011, 175:935-937.
doi: 10.1016/j.artint.2011.01.005
[18] Fox Maule C, Purucker M E, Olsen N. Inferring magnetic crustal thickness and geothermal heat flux from crustal magnetic field models[R]. Danish Meteorological Institute, 2009.
[19] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model:Procedures,data sources and analysis[M].National Oceanic and Atmospheric Administration Technical Memorandum,National Environmental Satellite,Data,and Information Service,National Geophysical Data Center, 2009.
[20] Reguzzoni M, Sampietro D, Sansò F. Global Moho from the combination of the CRUST2.0 model and GOCE data[J]. Geophysical Journal International, 2013, 195:222-237.
doi: 10.1093/gji/ggt247
[21] Pasyanos M E, Masters T G, Laske G, et al. LITHO1.0:An updated crust and lithospheric model of the Earth[J]. Journal of Geophysical Research:Solid Earth, 2014, 119:2153-2173.
doi: 10.1002/jgrb.v119.3
[22] Poupinet G, Shapiro N M. Worldwide distribution of ages of the continental lithosphere derived from a global seismic tomographic model[J]. Lithos, 2009, 109(1):125-130.
doi: 10.1016/j.lithos.2008.10.023
[23] Balmino G, Vales N, Bonvalot S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 2012, 86(7):499-520.
doi: 10.1007/s00190-011-0533-4
[24] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0 -A1-degree global model of Earth's crust[J]. Geophysical Research Abstracts, 2013,15,2658.
[25] Kaban M K, Schwintzer P, Reigber C. A new isostatic model of the lithosphere and gravity field[J]. Journal of Geodesy, 2004, 78(6):368-385.
doi: 10.1007/s00190-004-0401-6
[26] Maus S, Sazonova T, Hemant K, et al. National geophysical data center candidate for the world digital magnetic anomaly map[J]. Geochemistry,Geophysics,Geosystems, 2013, 8(6):1-10.
[27] Bassin C. The current limits of resolution for surface wave tomography in North America[J]. Eos Transactions American Geophysical Union, 2000,81,F897.
[28] USGS. Geologic province and thermo-tectonic age maps[M/OL]. https://earthquake.usgs.gov/data/crust/maps.php [2016-09-30].
[29] Shapiro N M, Ritzwoller M H. Monte-Carlo inversion for a global shear-velocity model of the crust and uppermantle[J]. Geophysical Journal International, 2002, 151(1):88-105.
doi: 10.1046/j.1365-246X.2002.01742.x
[30] Hartmann J, Moosdorf N. The new global lithological map database GLiM:A representation of rock properties at the Earth surface[J]. Geochemistry,Geophysics,Geosystems, 2012, 13(12):1-37.
doi: 10.1029/2011GC003955
[31] Coffin M F, Gahagan L M, Lawver L A. Present-day plate boundary digital data compilation[J]. University of Texas Institute for Geophysics Technical Report, 1998,174,5.
[32] Shapiro N M, Ritzwoller M H. Inferring surface heat flux distributions guided by a global seismic model:Particular application to Antarctica[J]. Earth and Planetary Science Letters, 2004, 223(1):213-224.
doi: 10.1016/j.epsl.2004.04.011
[33] Gosnold W. The global heat flow database[M/OL]. http://www.heatflow.und.ed-u/index2.html [2016-09-30].
[34] 吴乾蕃. 松辽盆地地热场[J]. 地震研究, 1991, 14(1):31-40.
[34] Wu Q F. Geothermal field in Songliao basin[J]. Earthquake Research, 1991, 14(1):31-40.
[35] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8):2892-2910.
[35] Jiang G Z, Gao P, Rao S, et al. Compilation of earth heat flow data in Chinese Mainland(Fourth Edition)[J]. Chinese Journal of Geophysics, 2016, 59(8):2892-2910.
[36] 刘耀光. 松辽盆地地热场特征与油气勘探的关系[J]. 石油勘探与开发, 1982(3):26-31.
[36] Liu Y G. Relationship between geothermal field characteristics and oil and gas exploration in Songliao Basin[J]. Petroleum Exploration and Development, 1982(3):26-31.
[37] He C S, Dong S W, Chen X H, et al. Seismic evidence for plume-induced rifting in the Songliao Basin of Northeast China[J]. Tectonophysics, 2014, 627:171-181.
doi: 10.1016/j.tecto.2013.07.015
[38] 肖龙, 王方正, 王华, 等. 地幔柱构造对松辽盆地及渤海湾盆地形成的制约[J]. 地球科学——中国地质大学学报, 2004, 29(3):283-292.
[38] Xiao L, Wang F Z, Wang H, et al. Constraints of mantle plume structure on the formation of Songliao basin and Bohai Bay basin[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(3):283-292.
[39] 张尔华, 姜传金, 张元高, 等. 徐家围子断陷深层结构形成与演化的探讨[J]. 岩石学报, 2010, 26(1):149-157.
[39] Zhang E H, Jiang C J, Zhang Y G, et al. Discussion on the formation and evolution of deep structure of Xujiaweizi fault depression[J]. Journal of Rock, 2010, 26(1):149-157.
[40] Sobolo I M. Sensitivity estimates for nonlinear mathematical models[J]. Math. Model. Comput. Exp., 1993, 1(4):407-417.
[41] Sobolo I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Math. Comput. Simul., 2001, 55:271-280.
doi: 10.1016/S0378-4754(00)00270-6
[1] 李红星, 谈顺佳, 姚振岸, 黄光南, 徐培渊, 周杰, 范利飞. 基于地震环境噪声的油页岩勘探[J]. 物探与化探, 2021, 45(4): 898-905.
[2] 刘仕友, 宋炜, 应明雄, 孙万元, 汪锐. 基于波形特征向量的凝聚层次聚类地震相分析[J]. 物探与化探, 2020, 44(2): 339-349.
[3] 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 多目标化探数据与油气藏指标特征的相关性研究[J]. 物探与化探, 2015, 39(3): 466-472.
[4] 袁志华, 徐丽雯. 松辽盆地泰康隆起东翼杜20-3井区油气微生物勘探[J]. 物探与化探, 2014, 38(2): 304-308.
[5] 闫磊, 潘保芝, 陈玉魁, 杨雪, 张晓明. 松辽盆地东岭地区火山岩气层测井识别与综合评价[J]. 物探与化探, 2008, 32(6): 656-660.
[6] 姚俊梅, 夏响华. 松辽盆地南部油气化探方法技术研究[J]. 物探与化探, 2000, 24(6): 418-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com