Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 934-944    DOI: 10.11720/wtyht.2024.1316
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
反射地震剖面揭示容城凸起基岩面和断裂结构及其对地热成因的启示
刘宏凯1(), 高磊1, 张杰2, 侯贺晟1, 谢民英3, 李洪强1()
1.中国地质科学院,北京 100037
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3.中国自然资源航空物探遥感中心,北京 100083
Bedrock surface and fault structures in the Rongcheng uplift revealed from reflection seismic profiles and their implications for the geothermal origin
LIU Hong-Kai1(), GAO Lei1, ZHANG Jie2, HOU He-Sheng1, XIE Min-Ying3, LI Hong-Qiang1()
1. Chinese Academy of Geological Sciences, Beijing 100037,China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(9585 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

容城凸起是华北地区地热资源富集区域之一,探测容城凸起基岩面的精细结构、埋深和断裂,对理解该区地热资源的分布和富集以及地热资源的勘查与开发具有重要意义。本文基于中国地质科学院2018年在容城凸起采集的SN向反射地震剖面数据,通过对反射数据精细处理,获得容城凸起4 km以浅的高精度几何结构,经地热孔资料标定后开展解释。主要获得以下4点认识:容城凸起基岩面以上新生代沉积地层呈近水平层状分布,这些近水平地层对容城地热田起到保温盖层作用;容城凸起基岩面埋深在700~3 000 m之间,其凸起中心部位变化相对平缓,向周边迅速加深到3 000 m左右;牛南断裂和容东断裂在深部延伸交汇,与其他中、小型断裂组成的断裂系统为水和热的传导提供了通道和空间;基岩面凸起的几何结构有利于热流在凸起下方汇聚。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宏凯
高磊
张杰
侯贺晟
谢民英
李洪强
关键词 容城凸起反射地震剖面基岩面地热断裂系统    
Abstract

The Rongcheng uplift in North China boasts abundant geothermal resources. Research indicates that the Rongcheng uplift exhibits significantly different physical properties between the bedrock surface and the overlying Cenozoic strata. Moreover, the bedrock surface serves as the primary top boundary of the geothermal reservoir in the Wumishan Formation. Investigating the fine-scale structures, burial depths, and faults of the bedrock surface in the Rongcheng uplift holds critical significance for understanding the distribution and enrichment of geothermal resources in the area and guiding their exploration and production. Through elaborative processing of the north-south reflection seismic profile data of the Rongcheng uplift, collected by the Chinese Academy of Geological Sciences in 2018, this study obtained the high-precision geometric structure of the Rongcheng uplift within a depth of 4 km. The geometric structure was calibrated using geothermal borehole data before interpretation. Key findings are as follows: (1) The Cenozoic sedimentary strata overlying the bedrock surface of the Rongcheng uplift exhibit a nearly horizontal layered distribution, serving as cap rocks of the Rongcheng geothermal field; (2) The bedrock surface of the Rongcheng uplift manifests burial depths ranging from 700 to 3 000 m, with gentle changes in the central portion, and rapidly deepening to around 3 000 m towards the periphery; (3) The Niunan and Rongdong faults converge in the deep part, constituting a fault system along with other medium and small faults, thus facilitating the conduction of water and heat; (4) The geometric structure of the Rongcheng uplift on the bedrock surface contributes to the convergence of heat flow beneath the uplift.

Key wordsRongcheng uplift    reflection seismic profile    bedrock surface    geothermal    fault system
收稿日期: 2023-07-25      修回日期: 2024-02-25      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目(SQ2023YFF0800060);国家自然科学基金项目(42074097);国家自然科学基金项目(42230303);国家自然科学基金项目(41904083);国家自然科学基金项目(41704089);国家自然科学基金项目(42004079);中国地质调查局项目(DD20230008);中国地质调查局项目(DD20189132)
通讯作者: 李洪强(1984-),男,博士,副研究员,主要从事深部地质结构探测工作。Email:hongqiangli@126.com
作者简介: 刘宏凯(2000-),男,中国地质科学院硕士研究生,主要研究方向为主动源地震探测。Email:CAGSLiuHongkai@163.com
引用本文:   
刘宏凯, 高磊, 张杰, 侯贺晟, 谢民英, 李洪强. 反射地震剖面揭示容城凸起基岩面和断裂结构及其对地热成因的启示[J]. 物探与化探, 2024, 48(4): 934-944.
LIU Hong-Kai, GAO Lei, ZHANG Jie, HOU He-Sheng, XIE Min-Ying, LI Hong-Qiang. Bedrock surface and fault structures in the Rongcheng uplift revealed from reflection seismic profiles and their implications for the geothermal origin. Geophysical and Geochemical Exploration, 2024, 48(4): 934-944.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1316      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/934
Fig.1  容城构凸起及周缘主要构造单元和断裂分布(底图据文献[23]修改)
Fig.2  容城凸起综合钻井柱状图(据文献[13,24]修改)
采集系统 检波器
主频/Hz
检波点
间距/m
炮点
深度/m
接收
道数
记录长
度/s
最小偏
移距/m
最大偏
移距/km
炮间距/m 覆盖次数 药量/kg 采样间
隔/ms
Sercel 428XL 10 40 30~45 720 30 40 14.38 80 180 10~18 2
Table 1  容城凸起反射地震剖面数据采集参数
Fig.3  原始单炮记录(3 s内)
Fig.4  研究区采用的反射地震数据处理流程
Fig.5  容城凸起反射地震偏移剖面
Fig.6  反射地震剖面及其解释结果
Fig.7  容城凸起纵波速度剖面
[1] 邱楠生, 许威, 左银辉, 等. 渤海湾盆地中—新生代岩石圈热结构与热—流变学演化[J]. 地学前缘, 2017, 24(3):13-26.
doi: 10.13745/j.esf.2017.03.002
[1] Qiu N S, Xu W, Zuo Y H, et al. Evolution of Meso-Cenozoic thermal structure and thermal-rheological structure of the lithosphere in the Bohai Bay Basin,eastern North China Craton[J]. Earth Science Frontiers, 2017, 24(3):13-26.
[2] 王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7):1970-1980.
[2] Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1970-1980.
[3] 陈墨香, 黄歌山, 张文仁, 等. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, 1982, 17(3):239-252.
[3] Chen M X, Huang G S, Zhang W R, et al. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province[J]. Chinese Journal of Geology, 1982, 17(3):239-252.
[4] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.
[4] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1981-1990.
[5] 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学:地球科学, 2012, 42(8):1135-1159.
[5] Zhu R X, Xu Y G, Zhu G, et al. Destruction of the North China Craton[J]. Sci China Earth Sci, 2012, 42(8):1135-1159.
[6] 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3):1003-1016.
doi: 10.6038/cjg20160322
[6] Chang J, Qiu N S, Zhao X Z, et al. Present-day geothermal regime of the Jizhong depression in Bohai Bay Basin,East China[J]. Chinese Journal of Geophysics, 2016, 59(3):1003-1016.
[7] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质, 2021, 48(5):1453-1468.
[7] Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiongan New Area:Evidence from geophysics[J]. Geology in China, 2021, 48(5):1453-1468.
[8] 郭世炎, 李小军. 河北保定容城凸起地热田储层属性与资源潜力[J]. 地质科学, 2013, 48(3):922-931.
[8] Guo S Y, Li X J. Reservoir stratum characterstics and geothermal resources potential of Rongcheng uplift geothermal field in Baoding,Hebei[J]. Chinese Journal of Geology:Scientia Geologica Sinica, 2013, 48(3):922-931.
[9] 高锐, 周卉, 卢占武, 等. 深地震反射剖面揭露青藏高原陆—陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2):14-27.
doi: 10.13745/j.esf.sf.2021.7.13
[9] Gao R, Zhou H, Lu Z W, et al. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau[J]. Earth Science Frontiers, 2022, 29(2):14-27.
doi: 10.13745/j.esf.sf.2021.7.13
[10] 陈墨香, 汪集旸, 汪缉安, 等. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1990, 64(1):80-91.
[10] Chen M X, Wang J Y, Wang J A, et al. The characteristics of the geothermal field and its formation mechanism in the North China down-faulted basin[J]. Acta Geological Sinica, 1990, 64(1):80-91.
[11] 唐博宁, 朱传庆, 邱楠生, 等. 雄安新区雾迷山组岩溶裂隙发育特征[J]. 地质学报, 2020, 94(7):2002-2012.
[11] Tang B N, Zhu C Q, Qiu N S, et al. Characteristics of the Karst thermal reservoir in the Wumishan Formation in the Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2002-2012.
[12] 孙冬胜, 刘池阳, 杨明慧, 等. 渤海湾盆地冀中坳陷中区中新生代复合伸展构造[J]. 地质论评, 2004, 50(5):484-491.
[12] Sun D S, Liu C Y, Yang M H, et al. Study on complex extensional structures in the middle Jizhong depressionin the Bohai Bay basin[J]. Geological Review, 2004, 50(5):484-491.
[13] 何登发, 单帅强, 张煜颖, 等. 雄安新区的三维地质结构:来自反射地震资料的约束[J]. 中国科学:地球科学, 2018, 48(9):1207-1222.
[13] He D F, Shan S Q, Zhang Y Y, et al. 3D geologic architecture of Xiongan New Area:Constraints from seismic reflection data[J]. Scientia Sinica:Terrae, 2018, 48(9):1207-1222.
[14] 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1):24-36.
[14] Zhai M G. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29(1):24-36.
[15] 于福生, 漆家福, 王春英. 华北东部印支期构造变形研究[J]. 中国矿业大学学报, 2002, 31(4):402-406.
[15] Yu F S, Qi J F, Wang C Y. Tectonic deformation of indosinian period in eastern part of North China[J]. Journal of China University of Mining & Technology, 2002, 31(4):402-406.
[16] 安美建, 赵越, 冯梅, 等. 什么控制了华北克拉通东部在新近纪的构造活动?[J]. 地学前缘, 2011, 18(3):121-140.
[16] An M J, Zhao Y, Feng M, et al. What resulted in new tectonic activities in the eastern North China Craton in the Neogene?[J]. Earth Science Frontiers, 2011, 18(3):121-140.
[17] 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、范围与机制[J]. 中国科学:地球科学, 2011, 41(5):583-592.
[17] Zhu R X, Chen L, Wu F Y, et al. Timing,scale and mechanism of the destruction of the North China Craton[J]. Sci China Earth Sci, 2011, 41(5):583-592.
[18] 商世杰, 丰成君, 谭成轩, 等. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 2019, 40(6):836-846.
[18] Shang S J, Feng C J, Tan C X, et al. Quaternary activity study of major buried faults near Xiongan new area[J]. Acta Geoscientica Sinica, 2019, 40(6):836-846.
[19] 梁苏娟. 冀中坳陷晚新生代地质构造特征及其油气赋存[D]. 西安: 西北大学, 2001.
[19] Liang S J. The Characteristics of Tectonics and Hydrocarbon Accumulation of Jizhong Depression in late Cenozoic era[D]. Xi’an: Northwest University, 2001.
[20] 索艳慧, 李三忠, 曹现志, 等. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 2017, 24(4):249-267.
doi: 10.13745/j.esf.yx.2017-3-17
[20] Suo Y H, Li S Z, Cao X Z, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4):249-267.
[21] 胡秋韵, 高俊, 马峰, 等. 雄安新区容城凸起区地热可采资源量动态预测[J]. 地质学报, 2020, 94(7):2013-2025.
[21] Hu Q Y, Gao J, Ma F, et al. Dynamic prediction of geothermal recoverable resources in the Rongcheng uplift area of the Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2013-2025.
[22] 戴明刚, 雷海飞, 胡甲国, 等. 雄安新区顶面埋深在3500m以浅的中元古界热储可采地热资源量和开发参数评估[J]. 地质学报, 2019, 93(11):2874-2888.
[22] Dai M G, Lei H F, Hu J G, et al. Evaluation of recoverable geothermal resources and development parameters of Mesoproterozoic thermal reservoir with the top surface depth of 3500 m and shallow in Xiongan New Area[J]. Acta Geologica Sinica, 2019, 93(11):2874-2888.
[23] 黄元溢, 孟凡厚, 张占恩, 等. 雄安新区深部结构三维探测——雄安新区深地震反射剖面数据采集与常规处理项目采集施工总结[R]. 中国石油集团东方地球物理勘探有限责任公司, 2018.
[23] Huang Y Y, Meng F H, Zhang Z E, et al. 3 D detection of deep structure in Xiongan New Area:The collection and construction summary of deep seismic reflection profile data collection and routine processing project in Xiongan New Area[R]. China National Petroleum Corporation. 2018.
[24] 单帅强. 太行山山前断层的构造几何学、运动学及其对渤海湾盆地发育的控制作用[D]. 北京: 中国地质大学(北京), 2018.
[24] Shan S Q. Structural geometry and kinematics of the Taihang Mountain piedmont fault and its controlling on the development of the Bohai Bay basin[D]. Beijing: China University of Geosciences, 2018.
[25] 马岩, 张保建, 闫金凯, 等. 雄安新区深部储热构造探测研究与地热井优选技术[J]. 地球学报, 2022, 43(5):699-710.
[25] Ma Y, Zhang B J, Yan J K, et al. Deep geothermal reservoir structure detection and geothermal well optimization technology in Xiongan new area[J]. Acta Geoscientica Sinica, 2022, 43(5):699-710.
[26] 鲁锴, 鲍志东, 季汉成, 等. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测[J]. 古地理学报, 2019, 21(6):885-900.
[26] Lu K, Bao Z D, Ji H C, et al. Characteristics,main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiongan New Area[J]. Journal of Palaeogeography, 2019, 21(6):885-900.
[27] 王贵玲, 李郡, 吴爱民, 等. 河北容城凸起区热储层新层系——高于庄组热储特征研究[J]. 地球学报, 2018, 39(5):533-541.
[27] Wang G L, Li J, Wu A M, et al. A study of the thermal storage characteristics of Gaoyuzhuang Formation,A new layer system of thermal reservoir in Rongcheng uplift area,Hebei Province[J]. Acta Geoscientica Sinica, 2018, 39(5):533-541.
[28] 熊亮萍, 高维安. 隆起与拗陷地区地温场的特点[J]. 地球物理学报, 1982, 25(5):448-456.
[28] Xiong L P, Gao W A. Characteristics of geotherm in uplift and depression[J]. Chinese Journal of Geophysics, 1982, 25(5):448-456.
[29] 熊亮平, 张菊明. 热流的折射和再分配的数学模拟[J]. 地质科学, 1984, 19(4):445-454.
[29] Xiong L P, Zhang J M. Mathematical simulation of refract and redistribution of heat flow[J]. Chinese Journal of Geology, 1984, 19(4):445-454.
[1] 仵阳, 赵福元, 虎新军, 陈晓晶, 卜进兵, 郭少鹏. 银川盆地东缘上地壳电性结构特征及地热勘探方向[J]. 物探与化探, 2024, 48(5): 1258-1267.
[2] 韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
[3] 张一, 刘鹏磊, 王玉敏, 张朋朋, 张超, 张宁. 综合物探技术在济南北部地热勘查中的应用[J]. 物探与化探, 2024, 48(1): 58-66.
[4] 郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
[5] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
[6] 杨明远, 张汉雄, 马超, 杨海磊, 朱威. AMT在新疆三屯河地区地下赋水性研究中的应用[J]. 物探与化探, 2023, 47(6): 1441-1449.
[7] 郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
[8] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[9] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[10] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[11] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[12] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[13] 韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证[J]. 物探与化探, 2023, 47(1): 65-72.
[14] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[15] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com