Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 105-112    DOI: 10.11720/wtyht.2024.2608
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演
张婧1(), 汪勇1, 赵慧言1, 衡德1, 黄君2, 张晓丹2, 王文文2, 贺燕冰2
1.四川长宁天然气开发有限责任公司,四川 成都 610000
2.成都捷科思石油天然气技术发展有限公司,四川 成都 610000
Prestack seismic inversion of fluid factors in fractured reservoirs based on the global adaptive MCMC algorithm
ZHANG Jing1(), WANG Yong1, ZHAO Hui-Yan1, HENG De1, HUANG Jun2, ZHANG Xiao-Dan2, WANG Wen-Wen2, HE Yan-Bing2
1. Sichuan Changning Natural Gas Development Co.,Ltd.,Chengdu 610000,China
2. Chengdu Jiekesi Petroleum Natural Gas Technology Development Co.,Ltd.,Chengdu 610000,China
全文: PDF(3624 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

裂缝型储层通常具有各向异性特征,其缝隙中充填流体时会表现出不同的地震响应。为了准确识别裂缝性储层缝隙流体,为油气勘探开发后期的水力压裂过程起到重要的指示作用,本文首先引入准裂缝法向弱度以及准裂缝切向弱度的概念并构建了一个新的缝隙流体指示因子,结合线性滑动理论推导得到了裂缝诱导的HTI介质的弹性刚度矩阵表达式;然后基于散射理论以及Born近似方程推导获得了弱对比界面的线性化P波入射各向异性反射系数方程。此外,本文在MCMC算法的基础上引入了自适应策略,提出了改进的全局自适应MCMC反演算法。结果表明:①无噪时模型测试结果与测井数据达到了90%以上的吻合度。②实际数据反演结果与测井解释结果较为吻合,且在目标层段钻遇油气。西南某工区模型测试以及实际资料应用结果表明,本文提出的裂缝型储层缝隙流体因子叠前地震反演方法,反演结果与测井解释数据吻合程度较高,具有一定的可靠性与适用性,可实现流体准确识别以及指示水力压裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婧
汪勇
赵慧言
衡德
黄君
张晓丹
王文文
贺燕冰
关键词 裂缝型储层流体识别全局自适应叠前地震反演    
Abstract

Fractured reservoirs typically exhibit anisotropic characteristics,and their fractures show different seismic responses when filled with fluids.Accurate identification of fluids in fractured reservoirs plays a significant role in indicating the hydraulic fracturing process in the late hydrocarbon exploration and production stage.This study adopted the concepts of normal and tangential fracture quasi-weaknesses and constructed a new indicative factor for fluids in fractures.Combining the linear slip theory, this study derived the elastic stiffness matrix expression of the fracture-induced HTI medium.Based on the scattering theory and the Born approximation equation,this study derived the linearized P-wave incident anisotropic reflection coefficient equation for the weakly contrasted interface.Moreover,this study proposed an improved global adaptive MCMC algorithm by introducing the adaptation strategy into the MCMC algorithm.The results show that:(1)In the absence of noise,the model testing results were highly consistent with the log data,with a consistency degree of above 90%;(2)The inversion results of the actual data aligned closely with the log interpretation results,and hydrocarbons were discovered through drilling in the target interval.As indicated by the results of model testing and actual data application in a study area in Southwest China,the prestack seismic inversion of fluid factors in fractured reservoirs,yielding highly consistent results with log interpretation data,demonstrates certain reliability and applicability and thus can achieve accurate fluid identification and hydraulic fracturing indication.

Key wordsfractured reservoir    fluid identification    global adaptive    prestack seismic inversion
收稿日期: 2022-12-06      修回日期: 2023-10-22      出版日期: 2024-02-20
ZTFLH:  P631.4  
基金资助:重庆市自然科学基金面上项目“基于成岩系统剖析的致密砂岩储层差异致密化机理及渗流差异响应研究”(cstc2021jcyj-msxmX0897);自然资源部页岩气资源勘察重点实验室开放课题“中深层海相页岩微纳米尺度非均质性及其对渗流差异的影响机理研究”(KLSGE-202102)
作者简介: 张婧(1985-),女,工程师,硕士,从事页岩气勘探开发方面的工作。Email: hxs_800009@aliyun.com
引用本文:   
张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
ZHANG Jing, WANG Yong, ZHAO Hui-Yan, HENG De, HUANG Jun, ZHANG Xiao-Dan, WANG Wen-Wen, HE Yan-Bing. Prestack seismic inversion of fluid factors in fractured reservoirs based on the global adaptive MCMC algorithm. Geophysical and Geochemical Exploration, 2024, 48(1): 105-112.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2608      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/105
M/GPa μ/GPa ρ/(kg·m-3) ? q δ N ? q δ T
层1 58 18 2.6 0 0
层2 78 23 2.5 1.15 1.07
Table 1  双层模型参数
Fig.1  反射系数方程对比
Fig.2  无噪情况下纵波模量(a)、剪切模量(b)、密度(c)、准裂缝法向弱度(d)、准裂缝切向弱度(e)以及流体指示因子HFI(f)的反演结果
Fig.3  信噪比为5∶1情况下纵波模量(a)、剪切模量(b)、密度(c)、准裂缝法向弱度(d)、准裂缝切向弱度(e)以及流体指示因子HFI(f)的反演结果
Fig.4  信噪比为2∶1情况下纵波模量(a)、剪切模量(b)、密度(c)、准裂缝法向弱度(d)、准裂缝切向弱度(e)以及流体指示因子HFI(f)的反演结果
Fig.5  流体指示因子HFI收敛曲线
Fig.6  方位地震数据
a—入射角6°、方位角45°;b—入射角18°、方位角45°;c—入射角30°、方位角45°;d—入射角6°、方位角135°;e—入射角18°、方位角135°;f—入射角30°、方位角135°
Fig.7  纵波模量(a)、剪切模量(b)、密度(c)、准裂缝法向弱度(d)、准裂缝切向弱度(e)以及流体指示因子HFI(f)的反演结果
[1] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 2002, 16(4):673-685.
doi: 10.1190/1.1437718
[2] Russell B H, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.
doi: 10.1190/1.1543192
[3] Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(3):C19-C29.
doi: 10.1190/1.3555082
[4] Yin X Y, Zhang S X. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5):R221-R232.
doi: 10.1190/geo2013-0372.1
[5] Schoenberg M, Douma J. Elastic wave propagation in media with parallel fractures and aligned cracks[J]. Geophysical Prospecting, 1988, 36(6):571-590.
doi: 10.1111/gpr.1988.36.issue-6
[6] Shaw R K, Sen M K. Born integral,stationary phase and linearized reflection coefficients in weak anisotropic media[J]. Geophysical Journal International, 2004, 158(1):225-238.
doi: 10.1111/gji.2004.158.issue-1
[7] van der Neut J, Shaw R K, Sen M K. Estimation of the fluid indicator from azimuthal AVO gradient variations at a fractured reservoir[C]// SEG Technical Program Expanded Abstracts 2007,Society of Exploration Geophysicists, 2007.
[8] 陈怀震, 印兴耀, 张金强, 等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报, 2014, 57(10):3431-3441.
doi: 10.6038/cjg20141029
[8] Chen H Z, Yin X Y, Zhang J Q, et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics, 2014, 57(10):3431-3441.
[9] 陈怀震, 印兴耀, 高成国, 等. 基于各向异性岩石物理的缝隙流体因子AVAZ反演[J]. 地球物理学报, 2014, 57(3):968-978.
[9] Chen H Z, Yin X Y, Gao C G, et al. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory[J]. Chinese Journal of Geophysics, 2014, 57(3):968-978.
[10] 谢春辉, 雍学善, 杨午阳, 等. 裂缝型储层流体识别方法[J]. 地球物理学报, 2015, 58(5):1776-1784.
doi: 10.6038/cjg20150527
[10] Xie C H, Yong X S, Yang W Y, et al. The method for identification of fluid in fractured reservoirs[J]. Chinese Journal of Geophysics, 2015, 58(5):1776-1784.
[11] 孙炜, 何治亮, 李玉凤, 等. 一种裂缝流体因子的提出及应用[J]. 地球物理学报, 2015, 58(7):2536-2545.
doi: 10.6038/cjg20150728
[11] Sun W, He Z L, Li Y F, et al. A new factor of fluid-filled fractures and its application[J]. Chinese Journal of Geophysics, 2015, 58(7):2536-2545.
[12] Pan X P, Zhang G Z, Chen H Z, et al. Elastic impedance parameterization and inversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturated reservoir[J]. Journal of Natural Gas Science and Engineering, 2018, 49:194-212.
doi: 10.1016/j.jngse.2017.10.020
[13] 印兴耀, 张洪学, 宗兆云. 五维地震油气识别方法[J]. 应用声学, 2020, 39(1):63-70.
[13] Yin X Y, Zhang H X, Zong Z Y. Seismic fluid identification based on 5D seismic data[J]. Journal of Applied Acoustics, 2020, 39(1):63-70.
[14] 张丰麒, 刘俊州, 刘兰锋, 等. 确定性反演协同约束的叠后随机地震反演方法[J]. 石油地球物理勘探, 2021, 56(5):1137-1149,930-931.
[14] Zhang F Q, Liu J Z, Liu L F, et al. The methodology of a post-stack stochastic seismic inversion with the co-constraint of deterministic inversion[J]. Oil Geophysical Prospecting, 2021, 56(5):1137-1149,930-931.
[15] 张广智, 赵晨, 涂奇催, 等. 基于量子退火Metropolis-Hastings算法的叠前随机反演[J]. 石油地球物理勘探, 2018, 53(1):153-160,9.
[15] Zhang G Z, Zhao C, Tu Q C, et al. Prestack stochastic inversion based on the quantum annealing Metropolis-Hastings algorithm[J]. Oil Geophysical Prospecting, 2018, 53(1):153-160,9.
[16] Buland A, Omre H. Bayesian linearized AVO inversion[J]. Geophysics, 2003, 68(1):185-198.
doi: 10.1190/1.1543206
[17] 孙瑞莹, 印兴耀, 王保丽, 等. 基于Metropolis抽样的弹性阻抗随机反演[J]. 物探与化探, 2015, 39(1):203-210.
[17] Sun R Y, Yin X Y, Wang B L, et al. Stochastic inversion of elastic impedance based on Metropolis sampling algorithm[J]. Geophysical and Geochemical Exploration, 2015, 39(1):203-210.
[18] 张繁昌, 肖张波, 印兴耀. 地震数据约束下的贝叶斯随机反演[J]. 石油地球物理勘探, 2014, 49(1):176-182,306.
[18] Zhang F C, Xiao Z B, Yin X Y. Bayesian stochastic inversion constrained by seismic data[J]. Oil Geophysical Prospecting, 2014, 49(1):176-182,306.
[19] 向坤, 陈科, 段心标, 等. 基于APSO-MCMC的叠前三参数同步随机反演方法研究[J]. 石油物探, 2022, 61(4):673-682.
doi: 10.3969/j.issn.1000-1441.2022.04.010
[19] Xiang K, Chen K, Duan X B, et al. Stochastically simultaneous inversion of prestack data using APSO-MCMC method[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):673-682.
doi: 10.3969/j.issn.1000-1441.2022.04.010
[20] 纪永祯, 张渝悦, 朱立华, 等. 多道随机稀疏反射系数反演[J]. 石油物探, 2020, 59(6):912-917.
doi: 10.3969/j.issn.1000-1441.2020.06.009
[20] Ji Y Z, Zhang Y Y, Zhu L H, et al. Multi-trace stochastic sparse-spike inversion for reflectivity[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):912-917.
[21] Schoenberg M, Sayers C M. Seismic anisotropy of fractured rock[J]. Geophysics, 1995, 60(1):204-211.
doi: 10.1190/1.1443748
[22] Shaw R K, Sen M K. Use of AVOA data to estimate fluid indicator in a vertically fractured medium[J]. Geophysics, 2006, 71(3):C15-C24.
doi: 10.1190/1.2194896
[23] Pšenčík I, Martins J L. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica, 2001, 45(2):176-199.
doi: 10.1023/A:1021868328668
[24] Ulrych T J, Sacchi M D, Woodbury A. A Bayes tour of inversion:A tutorial[J]. Geophysics, 2001, 66(1):55-69.
doi: 10.1190/1.1444923
[25] Alemie W, Sacchi M D. High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution[J]. Geophysics, 2011, 76(3):R43-R55.
doi: 10.1190/1.3554627
[26] Zong Z Y, Yin X Y, Wu G C. Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio[J]. Geophysics, 2013, 78(6):N35-N42.
doi: 10.1190/geo2012-0529.1
[1] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[2] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[3] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4): 662-667.
[4] 冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4): 707-714.
[5] 田瀚, 杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545-552.
[6] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5): 970-975.
[7] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
[8] 杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3): 360-366.
[9] 张广智, 郑静静, 印兴耀, 张作胜, 武国虎. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4): 505-510.
[10] 李国福, 李录明, 李才明. 三维定量交会技术在流体预测中的研究[J]. 物探与化探, 2011, 35(3): 398-401.
[11] 谢风猛. 古潜山裂缝储层预测新方法[J]. 物探与化探, 2010, 34(2): 233-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com