Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 747-756    DOI: 10.11720/wtyht.2023.2579
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术
刘军1,2(), 黄超2, 杨林2, 张永升2, 查明1
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.中石化西北油田分公司 勘探开发研究院,新疆 乌鲁木齐 830011
Quantitative prediction technology for the hydrocarbon production capacity of fractures and vugs in fault-controlled carbonate reservoirs in the Shunbei area
LIU Jun1,2(), HUANG Chao2, YANG Lin2, ZHANG Yong-Sheng2, ZHA Ming1
1. School of Geosciences,China University of Petroleum,Qingdao 266580,China
2. Exploration and Development Research Institute,Sinopec Northwest China Petroleum Bureau,Urumqi 830011,China
全文: PDF(6046 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

走滑断裂带及其控制的缝洞体是顺北地区奥陶系新的勘探领域,探索断控缝洞体储层单井产量多属性量化预测技术,为顺北地区断裂带井位部署与井轨迹优选提供科学依据和技术支撑。断控缝洞体储层中,断裂是油气运移通道,其纵向延伸和宽度是断裂的通源性,主干断裂与次级断裂平面交汇结构表征断裂的汇聚性,通源性和汇聚性表征成藏断裂特征。断控缝洞体中缝洞是储集空间的主体,断控缝洞体储层规模和断裂裂缝分布密度表征缝洞特征。断控缝洞体储层的单井产量既与断裂特征有关,更与缝洞特征有关。因此,量化的断裂特征和缝洞特征是单井产量量化预测的基础。地震数据及其多种属性的断层精细解释,量化后得到断裂特征值。结构张量属性圈定断控缝洞体储层范围,异常体振幅属性表征缝洞的分布及其体量,最大似然概率属性表征断裂裂缝分布密度,3种属性融合得到缝洞特征值。最后将量化的断裂特征值和缝洞特征值融合为断控缝洞体特征值,与实测钻井的年产液量进行统计分析,得到年产液量与断控缝洞体特征值的统计关系式,实现断控缝洞体储层单井产量的量化预测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘军
黄超
杨林
张永升
查明
关键词 断控缝洞体储层断裂特征缝洞特征断控缝洞体特征单井产量量化预测异常体分解结构张量最大似然概率    
Abstract

The strike-slip fault system and the fractures and vugs in fault-controlled reservoirs have become new Ordovician exploration targets in the Shunbei area.This study explored a multi-attribute quantitative prediction technique for the single-well production of fault-controlled reservoirs,aiming to provide a scientific basis and technical support for well deployment and well trajectory optimization in the fault zones of the Shunbei area.Faults serve as pathways for hydrocarbon migration in fault-controlled reservoirs.Their connectivity to provenance areas can be characterized by their longitudinal extension and the width of the fault zone,and their convergence can be characterized by their lateral extension and the planar intersection structure between major and secondary faults.Both characteristics of faults were used to indicate the fault characteristics in the oil source conditions for oil accumulation.The space for hydrocarbon accumulation in fault-controlled reservoirs is dominated by dissolution fractures and vugs,such as caves.The fracture-vug characteristics,which represent the space for hydrocarbon accumulation and its connectivity,were characterized by the scale of fault-controlled reservoirs,the volume of the fractures and vugs,and the density of fractures in faults.The single-well production of fault-controlled reservoirs is related to both the fault characteristics and the fracture-vug characteristics.Therefore,the quantification of fault characteristics and the fracture-vug characteristics is the basis for the quantitative prediction of single-well production.The fault characteristic values were determined through the fine-scale interpretation of faults based on seismic data and their multiple attributes.Moreover,the range of fault-controlled reservoirs was delineated based on structure tensors;the distribution and volume of caves,fractures,and vugs were characterized using the amplitude of anomalous bodies;and the density of fractures in faults can be characterized using the maximum likelihood probability.Then,the three attributes were fused to determine the fracture-vug characteristic values.Finally,the quantified fault characteristic values and fractured-vug characteristic values were fused into the characteristic value of fault-controlled reservoirs.Through the statistical analysis of the characteristic value and annual liquid production of drilled wells,the statistical relationship between the annual fluid production and the characteristic value of fault-controlled reservoirs was determined,thus achieving the quantitative prediction of the single-well production of fault-controlled reservoirs.

Key wordsfault-controlled reservoirs    fault characteristic    fracture-vug characteristic    characteristic of a fault-controlled reservoirs    quantitative prediction of single-well production    anomalous body decomposition    structure tensor    maximum likelihood probability
收稿日期: 2022-02-22      修回日期: 2023-01-31      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:中国石化重点科技项目“超深层碳酸盐岩地震关键技术研究与应用”(P21071)
作者简介: 刘军(1982-),男,2005年获中国石油大学(华东)信息与计算科学专业学士学位,2009年获该校地球探测与信息技术专业硕士学位,目前该校博士在读,主要从事石油物探综合研究工作。Email:408842381@qq.com
引用本文:   
刘军, 黄超, 杨林, 张永升, 查明. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3): 747-756.
LIU Jun, HUANG Chao, YANG Lin, ZHANG Yong-Sheng, ZHA Ming. Quantitative prediction technology for the hydrocarbon production capacity of fractures and vugs in fault-controlled carbonate reservoirs in the Shunbei area. Geophysical and Geochemical Exploration, 2023, 47(3): 747-756.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2579      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/747
Fig.1  断溶体储层中不同类型断裂特征的地震响应特征
a—挤压断裂;b—拉分断裂;c—平移断裂
Fig.2  断裂平面相交的结构特征
Fig.3  偏移剖面及其3种属性剖面
a—偏移剖面;b—异常体振幅属性剖面;c—结构梯度张量属性剖面;d—最大似然概率属性剖面
Fig.4  不同层位异常体振幅、结构梯度张量和最大似然概率3种属性平面
a— T 7 6- T 7 8 异常体振幅属性;b— T 7 6- T 7 8 结构梯度张量属性;c— T 7 6- T 7 8最大似然概率属性
Fig.5  过高产井的偏移剖面(a)、异常体振幅属性(b)、结构梯度张量属性(c)、最大似然概率属性(d)剖面
Fig.6  主干断裂和分支断裂交汇部位的高产井
断裂特征 断裂通源性 A 1 断裂汇聚性 A 2
延伸至
T 9 0以下(I)
延伸在
T 9 0以上(II)
主干+分支
交汇部位(I)
仅有主
干断裂(II)
量化值 0.5 0 0.5 0
Table 1  断裂的通源性和汇聚性的量化分级
Fig.7  串珠振幅与高度和宽度相关关系的正演模拟
a—宽度60 m、高度0~40 m洞穴正演模拟偏移剖面;b—高度6 m、宽度 10~300 m 洞穴正演模拟偏移剖面;c—宽度60 m、高度0~40 m洞穴串珠振幅变化曲线;d—高度6 m、宽度 10~300 m 洞穴串珠振幅变化曲线
井名 单井年产液量/ t 断裂特征值 缝洞特征值 断控缝洞体特征值
SWOC A1 A2 A B E F K = ( 1 + A ) × B
S1 77000 0.5 0.5 1 3484.184 6968.368
S2 54000 0.5 0.5 1 3546.903 7093.806
S3 42000 0 7605.866 7605.866
S4 27000 0.5 0 0.5 4052.342 6078.515
S5 25000 0 1985.622 1985.622
S6 24000 0 2696.085 2696.085
S7 24000 0 1354.254 1354.254
S8 22000 0 2408.270 2408.27
S9 21000 0 2810.141 2810.141
S10 21000 0 2207.304 2207.304
S11 19000 0 521.6 521.6
S12 18000 0 3565.860 3565.860
S13 12000 0 3936.628 3936.628
S14 7000 0 1609.080 1609.080
S15 5000 0 1503.801 1503.801
S16 1000 0 1406.6 1406.6
Table 2  16口样本井年产液量SWOC与断控缝洞体特征值EFK统计
Fig.8  单井年产液量与断控缝洞体特征值变化趋势曲线
Fig.9  单井年产液量与断控缝洞体特征值的拟合关系曲线
Fig.10  顺北1区预测年累计产液量平面
序号 井名 年累计产
液量/万t
按产液
量分级
预测产
量分级
预测
符合情况
1 S1 7.7 高产井 高产
2 S2 5.4 高产
3 S3 4.2 高产
4 S4 3.6 低产 ×
5 S5 2.7 中产井 低产 ×
6 S6 2.5 中产
7 S7 2.4 高产 ×
8 S8 2.4 中产
9 S9 2.2 低产 ×
10 S10 2.1 高产 ×
11 S11 2.1 中产
12 S12 1.9 中产
13 S13 1.3 中产
14 S14 1.2 低产 ×
15 S15 1.1 中产
16 S16 1 中产
17 S17 0.5 低产 低产
18 S18 0.1 低产
19 S19 0.1 低产
20 S20 0 中产 ×
总计
预测符合率
13 7
65% 35%
Table 3  顺北1区年产液量预测符合率
[1] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3):347-355.
[1] Lu X B, Hu W G, Wang Y, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3):347-355.
[2] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2):208-216.
[2] Jiao F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2):208-216.
[3] 吴涛, 戴少康, 曹飞, 等. 走滑断裂系对碳酸盐岩“断溶体”油藏形成的控制作用——以塔河油田托普台北为例[J]. 地球科学前沿, 2017, 7(5):681-694.
[3] Wu T, Dai S K, Cao F, et al. Strike slip fault system and it's controlling on the formation of "reservoir of fault controlling dissoulution":A case study of Toufutai Area,Tahe Oil Fields[J]. Advances in Geosciences, 2017, 7(5):681-694.
doi: 10.12677/AG.2017.75069
[4] 马乃拜, 金圣林, 杨瑞召, 等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探, 2019, 54(2):398-403.
[4] Ma N B, Jin S L, Yang R Z, et al. Seismic reservoir characteristics and identification of fault karst reservoir in Shunbei area,Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2):398-403.
[5] 王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1):149-154.
doi: 10.3969/j.issn.1000-1441.2019.01.017
[5] Wang Z, Wen H, Deng G X, et al. Fault-karst characterization technology in the Tahe Oilfield,China[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):149-154.
doi: 10.3969/j.issn.1000-1441.2019.01.017
[6] 李鹏飞, 崔德育, 田浩男. 塔里木盆地塔北地区X区块断溶体刻画方法与效果[J]. 石油地球物理勘探, 2017, 52(s1):189-194.
[6] Li P F, Cui D Y, Tian H N. Fault karst carbonate reservoir description with GeoEast interpretation sub-system in the Tabei area,Tarim Basin[J]. Oil Geophysical Prospecting, 2017, 52(s1):189-194.
[7] 徐红霞, 沈春光, 李斌, 等. 多属性分析技术在碳酸盐岩断溶体预测中的应用[J]. 石油地球物理勘探, 2017, 52(s2):158-163.
[7] Xu H X, Shen C G, Li B, et al. Fault-karst carbonate reservoir prediction with comprehensive multi-attribute analysis[J]. Oil Geophysical Prospecting, 2017, 52(s2):158-163.
[8] 唐文榜, 韩革华, 刘来祥, 等. 溶洞充填物判识的频率差异分析技术[J]. 石油与天然气地质, 2002, 23(1):41-44.
[8] Tang W B, Han G H, Liu L X, et al. Analysis technique of difference for discrimination of cavity fillers[J]. Oil & Gas Geology, 2002: 23(1):41-44.
[9] 姚姚, 唐文榜. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J]. 石油地球物理勘探, 2003, 38(6):623-629.
[9] Yao Y, Tang W B. The theoretical researching of detecting for deeply carbonate grotto mantlerrock cavity reservoir[J]. Oil Geophysical Prospecting, 2003, 38(6):623-629.
[10] 刘坤岩, 许杰. 塔河奥陶系隐蔽溶洞体地震精细识别[J]. 石油地球物理勘探, 2019, 54(5):1106-1114.
[10] Liu K Y, Xu J. Identification of Ordovician subtle cave reservoirs in Tahe on seismic data[J]. Oil Geophysical Prospecting, 2019, 54(5):1106-1114.
[11] 王晓梅, 唐文榜, 等.李学著, 碳酸盐岩溶洞型储层反演方法[J]. 物探与化探, 2005, 29(1):44-46.
[11] Wang X M, Tang W B, Li X Z, et al. An inversion techniques for water-eroded case type carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2005, 29(1):44-46.
[12] 孙海宁, 王晓梅, 刘来祥. AVO技术在识别充填流体溶洞中的应用[J]. 物探与化探, 2008, 32(4):397-399.
[12] Sun H N, Wang X M, Liu L X. The application of AVO to the predication of water-eroded caves filled with liquids for carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2008, 32(4):397-399.
[13] 李宗杰, 刘群, 李海英, 等. 塔河油田缝洞储集体油水识别的谐频特征分析技术应用研究[J]. 石油物探, 2014, 53(4):484-490.
doi: 10.3969/j.issn.1000-1441.2014.04.015
[13] Li Z J, Liu Q, Li H Y, et al. Application of HFC technique for hydrocarbon identification in fracture-cave reservoirs of lower-Ordovician Carbonate in Tahe oilfield[J]. Geophysical Prospecting for Petroleum, 2014, 53(4):484-490.
[14] 樊佳方, 李宗杰, 韩革华, 等. 基于属性差异薄储集层(体)流体预测技术[C]// 北京: SPG/SEG 南京2020国际地球物理会议论文集, 2020:723-726.
[14] Fan J F, Li Z J, Han G H, et al. Fluid prediction techniques for thin reservoirs based on seismic attribute differences[C]// Beijing: SPG/SEG Nanjing 2020 International Geophysical Conference, 2020:723-726.
[15] 马艺璇, 李慧莉, 刘坤岩, 等. 基于分频相干体的蚂蚁追踪技术在塔河油田断裂刻画中的应用[J]. 石油物探, 2020, 59(2):258-266.
doi: 10.3969/j.issn.1000-1441.2020.02.012
[15] Ma Y X, Li H L, Liu K Y, et al. Application of an ant-tracking technique based on spectral decomposition to fault characterization[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):258-266.
doi: 10.3969/j.issn.1000-1441.2020.02.012
[16] 陈双全, 季敏. 地震数据结构张量相干计算方法[J]. 石油物探, 2012, 51(3):234-238.
[16] Chen S Q, Ji M. Structure tensor coherence computation method of seismic data[J]. Geophysical Prospecting for Petroleum, 2012, 51(3):234-238.
[17] 梁志强. 不同尺度裂缝的叠后地震预测技术研究[J]. 石油物探, 2019, 58(5):766-772.
doi: 10.3969/j.issn.1000-1441.2019.05.016
[17] Liang Z Q. Post stack seismic prediction techniques for fractures of different scales[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):766-772.
[18] 刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2):191-196.
doi: 10.3969/j.issn.1000-1441.2012.02.013
[18] Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-196.
doi: 10.3969/j.issn.1000-1441.2012.02.013
[19] 朱成宏, 黄国骞, 秦瞳. 断裂系统精细分析技术[J]. 石油物探, 2002, 41(1):42-48.
[19] Zhu C H, Huang G Q, Qin T. Methods for detailed fracture system description[J]. Geophysical Prospecting for Petroleum, 2002, 41(1):42-48.
[20] 黄苇, 周捷, 高利君, 等. 基于同步挤压改进短时傅里叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2):432-439.
[20] Huang W, Zhou J, Gao L J, et al. The application of frequency division ant tracking based on synchronous extrusion improvement of short time Fourier transform in crack detection[J]. Geophysical and Geochemical Exploration, 2021, 45(2):432-439.
[21] 马玉歌, 苏朝光, 张健, 等. 低序级断层结构导向坎尼属性边缘检测识别方法[J]. 物探与化探, 2020, 44(3):698-703.
[21] Ma Y G, Su C G, Zhang J, et al. Low-order fault structure-oriented Canny property edge detection and recognition method[J]. Geophysical and Geochemical Exploration, 2020, 44(3):698-703.
[1] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com