E-mail Alert Rss
 

物探与化探, 2023, 47(2): 372-376 doi: 10.11720/wtyht.2023.2657

方法研究·信息处理·仪器研制

基于探地雷达等效采样的时变零偏实时校正方法

冯温雅,, 程丹丹, 王成浩, 程星

中国电波传播研究所,山东 青岛 266107

A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars

FENG Wen-Ya,, CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing

China Research Institute of Radio Propagation,Qingdao 266107,China

第一作者: 冯温雅(1983-),女,高级工程师,主要从事探地雷达信号处理工作。Email:fengwenya3@aliyun.com

责任编辑: 叶佩

收稿日期: 2021-12-21   修回日期: 2022-11-28  

基金资助: 国家重点研发计划项目(2018YFC0824603)

Received: 2021-12-21   Revised: 2022-11-28  

摘要

探地雷达系统的温漂现象、有耗媒质的低通效应以及天线与地面间耦合性的下降会导致回波变形,使有效雷达回波与零偏分量混叠,不利于弱小信号检测。传统的前端修正方法和后处理方法,旨在提高发射效率,去除杂波噪声,并未改善系统的信噪比和灵敏度。因此,该文采用时变零偏实时校正方法对等效采样电路进行改进,单独控制每个采样的零偏系数,并且每次采样实时更新叠代,避免将直流、低频成分与有效信号同时送入后续程控放大电路,保证了弱信号的正确采集及系统的动态范围。实验验证了该方法的有效性及可行性,已应用于新型号数字化探地雷达产品。

关键词: 探地雷达; 等效采样; 时变零偏; 实时校正

Abstract

Echoes can be distorted due to the temperature drift of the ground penetrating radar (GPR) system,the low-pass effect of lossy media,and the decline in the coupling between the antenna and the ground.The mixing of effective radar echoes and zero-offset components makes it difficult to detect weak signals.The conventional front-end correction and post-processing methods,which aim to improve the transmission efficiency and remove the clutter noise,fail to improve the signal-to-noise ratio (SNR) and sensitivity of the system.To overcome these obstacles,this study improved the equivalent sampling circuit using a real-time correction method based on time-varying zero offset.Specifically,the zero-offset coefficient of each sampling was controlled separately and was updated in real time on each sampling.No DC and low-frequency components were sent into the subsequent programmable amplifier along with effective signals,ensuring the correct acquisition of weak signals and the dynamic range of the system.Experiments have proved the validity and feasibility of this method,which has been applied to a new type of digital GPR product.

Keywords: ground penetrating radar; equivalent sampling; time-varying zero offset; real-time correction

PDF (1781KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376 doi:10.11720/wtyht.2023.2657

FENG Wen-Ya, CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing. A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 372-376 doi:10.11720/wtyht.2023.2657

0 引言

探地雷达(ground penetrating radar,GPR)是通过高频电磁波在介质中反射和折射等现象来实现地下介质的探测[1]。探地雷达工作对象为有耗介质,电磁波在其中传播时会发生衰减和频散,导致接收到的数据图像变得模糊失真[2];对于地面耦合天线,当探测介质表面起伏不平时,会改变其耦合性[3],带来不均匀的杂波;系统内部电子元器件的可靠性随温度升高而下降,也会引起信号的随机不确定性[4]

为提高GPR回波质量及系统探测性能,传统的硬件方式包括:为增加天线有效辐射面积,在天线端添加屏蔽壳[5],吸波材料等部件;为改善天线与介质的耦合性,在电路设计时考虑阻抗匹配[6]和电磁兼容。这些方法主要针对提高发射接收模拟信号的效能,并未考虑主控部分的模数转换环节。经典的软件方式常通过频域和时域滤波来实现。如利用自适应滤波[7]、小波变换[8]、时频域分析[9]、反褶积[10]、偏移[11]来抑制耦合波及噪声;有学者将奇异值分解[12]用于信号分解,将主元成分分析[13]用于信号的重构,取得了较好的降噪效果;还有的利用神经网络[14]技术进行样本学习,提高数据的信噪比。这些算法都是在信号采样及模数转换后,对已量化的雷达数据进行处理,本质上只是提高雷达图像的质量,美化雷达数据的可视效果。但雷达系统性能,如对弱信号的反应能力,对强弱信号的对比能力,对干扰的抵挡能力等,并未得以提升。而且后处理算法往往耗时较长,不满足实地勘探、及时显示的要求。如果目标反射较弱,在信号采集阶段已淹没于杂波信号中,后期处理亦难以得到有效恢复或增强。

鉴于上述问题,本文结合探地雷达回波信号等效采样[15]方式的特点,提出了时变零偏实时校正方法。在等效采样之后,功率放大之前利用程控电路校正零偏系数[16],避免将杂波与有效信号同时放大,从而达到增强弱信号,提高信噪比和灵敏度,优化系统动态范围的目的。

1 等效采样时变零偏设计

图1是等效采样时变零偏校正电路框图。探地雷达天线接收的回波是模拟信号,其中夹杂很多的频率分量,为了得到有效回波,需要利用滤波电路对指定频带内的信号进行加重或衰减。由于冲激脉冲体制探地雷达的回波频带较宽,如果直接对回波信号采样,要求A/D 的转换率非常高。而高速 A/D 转换器会使分辨率降低,且成本非常高。为了解决这一矛盾,一般采用等效采样。为满足数据采集部分的动态范围及系统灵敏度,要在FPGA的控制下,由D/A芯片完成零偏校正和增益放大。在DSP中完成波形重构,然后送入主控显示及存储。

图1

图1   等效采样时变零偏校正电路框图

Fig.1   Block diagram of equivalent sampling time-varying zero-offset correction circuit


冲激脉冲体制探地雷达回波呈周期一致性,可在每个等效采样周期内改变零偏控制基线。对混叠了低频漂移的接收信号设置大零偏基线,达到增大接收机动态范围和灵敏度的效果。如图2所示,由周期为T的触发信号控制步进间隔时间为t的采样脉冲,在每个周期特定时刻对接收信号进行采样。每个采样周期可单独设定零偏基线,量化后的接收信号就是T,2T+t,3T+2t,4T+3t,5T+4t,…时刻不同零偏基线对应的采样信号。接收信号重复周期也是T,就等效于采样出了一个周期T内0,t,2t,3t,4t,5t,…时刻的数字化接收信号。通过调节采样时的零偏基线可以增强主频范围内信号,抑制直流和低频信号,使接收机一直保持最大的灵敏度,为后续突显弱信号提供更大的增益空间。

图2

图2   等效采样时变零偏示意

Fig.2   Schematic diagram of equivalent sampling time-varying zero zero-offset


2 时变零偏实时校正算法

处于同一深度的均匀介质具有连续的电磁特性,其反射回波呈现平稳性,所以可以推测零偏基线也具有一定的可预测性(图3)。假设第0道数据的零偏系数为零,等效采样取得第1道数据后,滤波得到低频分量,把它等效为第1道数据的零偏基线。对第2道数据等效采样时利用第1道数据的零偏系数进行反向校正。依次类推,第n道数据等效采样时利用第n-1道数据的零偏系数进行校正,从而达到时变零偏实时校正的目的。利用D/A芯片将数字化的零偏基线转化为模拟信号的零偏系数,这一组模拟电压值,就对应不同深度处的采样零偏。

图3

图3   时变零偏实时校正算法框图

Fig.3   Block diagram of time-varying zero-offset real-time correction algorithm


传统的实时零偏校正算法[17]是预采集一道数据求平均值,将此平均值作为零偏基线送入校正电路存储,之后采集的所有数值点都与此平均值相减,从而实现零偏去除。如式(1)所示,其中Xi(j)代表第i道第j点数据,X0(j)代表预采集道第j点数据,n是每道数据的采样点数,DCXi(j)代表零偏去除之后的第i道第j点数据:

DCXi(j)=Xi(j)-1nj=1nX0(j)

从式(1)可以看出,零偏基线是一恒定直线,即所有道全部数据点采样过程中均使用一个零偏系数,所以只能去除系统中稳定的直流漂移。当零偏包含时变低频分量时就无法去除干净,此时要采用新的时变零偏实时校正算法:

DCXi(j)=Xi(j)-12m+1j=j-mj=j+mXi-1(j);j=1,2,,n

其中Xi(j)代表第i道第j点数据,Xi-1(j)代表第i-1道的第j点数据,2m+1是滑动窗的采样点长度,滑动窗的长度一般选为1.5~2倍波长,DCXi(j)代表时变零偏实时校正之后的第i道第j点数据。新的时变零偏实时校正算法就是将前一道数据滑动求平均值,滑动平均有时域低通滤波的属性。将此滑动平均值曲线换算为对应于不同深度的零偏系数送入校正电路存储,每采集一道新数据就重新计算零偏系数并对存储空间进行动态更新。新算法不仅能去除固定的直流漂移,而且能有效抑制平稳变化的低频分量,增加了系统的动态范围,提高了系统对弱信号的灵敏度。

3 实验结果及分析

本文采用的改进算法按照波长确定参数,而波长由天线频率和探测介质共同决定,因此以常用的400 MHz天线对沥青水稳公路测试结果进行示例说明。其他频率天线选取对应的参数,应用效果相当,不再赘述。

图4是石家庄某道路上不同硬件电路的实测数据。图4a是无零偏校正时的二维剖面数据,图中框出的是一处沉降反应。可以看到地面起伏加重了零偏噪声,与沉降反射回波混叠,视觉上雷达图像模糊,无法准确判断沉降发生的位置和规模,很容易就误判为深度范围250~340点,跨度范围170~240道位置的一次沉降;图4b是采用固定零偏校正电路采集的二维剖面数据,可以看到,零偏噪声有所抑制,但能量分布欠均匀,图像整体清晰度未明显提高,对沉降的判断无明显改变;图4c是采用时变零偏实时校正电路采集的二维剖面数据,低频零偏得到有效抑制,图像清晰,能量均匀,沉降起始处的细节信号得以突显,可以准确判断此处为二次沉降,深度范围200~340点,跨度范围120~240道。相比较,图4c数据更便于明确病害属性、位置、规模,更有利于指导工程养护。

图4

图4   400 MHz天线实测二维剖面数据对比

a—无零偏校正;b—固定零偏校正;c—时变零偏实时校正

Fig.4   Comparison of B-Scan data of 400 MHz antenna

a—B-Scan without zero-offset correction;b—B-Scan with fixed zero-offset correction;c—B-Scan with time-varying zero-offset correction


图5图4所示二维剖面中第158道数据。黑色曲线是无零偏校正时的单道数据。发现从150采样点附近信号开始漂移, 230采样点附近已经完全影响了沉降反射信号的相位,此时沉降反射的信噪比为-4.7 dB;蓝色曲线是固定零偏校正得到的单道数据,零偏通常是时变低频信号而非固定直流分量,该方法仍然无法将沉降反射与低频漂移信号进行有效分离,虽然图像视觉有所改善,但此时沉降反射的信噪比却下降到-10.6 dB;红色曲线是时变零偏实时校正得到的单道数据,低频漂移被完全抑制,沉降反射信号相位得以修正,幅度得以突显,此时沉降反射的信噪比提高至8.4 dB。

图5

图5   400 MHz天线实测单道数据对比

Fig.5   Comparison of A-Scan data of 400 MHz antenna


图6图4所示二维剖面中第158道数据的频谱分析。黑色曲线是无零偏校正时的单道频谱,发现直流及低频分量已远远超出400 MHz主频附近的能量;蓝色曲线是固定零偏校正对应的单道频谱,功率谱分布并无明显变化;红色曲线是时变零偏实时校正对应的单道频谱,不仅直流及低频分量得到有效抑制,400 MHz主频附近的功率还得以增强,使回波信号能量主要集中在200~800 MHz这一有效通带范围内。

图6

图6   400 MHz天线实测单道数据频谱对比

Fig.6   Spectrum comparison of A-Scan data of 400 MHz antenna


4 结论

探测介质的多样性、工作环境的复杂性及电子元器件的不稳定性,使得探地雷达采集到的回波信号有时出现零偏现象,波形发生畸变,甚至影响相位。传统方法集中在两个方面,即对前端传感器做改进,对后端数据做处理。本文采用一种软硬件结合的时变零偏实时校正方法,应用于等效采样和模数转换环节,目的是消除零偏,降低噪声,提高探地雷达接收信号的动态范围和信噪比,使畸变信号得以恢复,系统整体性能得以提升。实测数据验证了该方法的可行性,达到了预期的设计效果,本文的设计方案已经应用于新一代产品中。在此基础上,我们将开展后续的信号处理和成像研究、实验,同时探索定量评价系统性能与回波质量的方法。

参考文献

Niklas A, Jens T.

Ground-penetrating radar surveying using antennas with different dominant frequencies

[C]// 18th International Conference on Ground Penetrating Radar, 2020.

[本文引用: 1]

Che M, Ariffuddin J, Maryanti R, et al.

Frequency based signal processing technique for pulse modulation ground penetrating radar system

[J]. International Journal of Electrical and Computer Engineering, 2021, 11(5):4104-4112.

[本文引用: 1]

Cao Q, Al-Qadi I L.

Signal stability and the height-correction method for ground-penetrating Radar In Situ Asphalt concrete density prediction

[J]. Transportation Research Record Journal of the Transportation Research Board, 2021, 4(2):1-12.

[本文引用: 1]

Arvind S, Phong N, Kenneth A.

A highly-digital multi-antenna ground-penetrating radar(GPR) system

[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 26(5):94-109.

[本文引用: 1]

Fiseha N B, Yeong T C, Sung J L.

Development of GPR device and analysis method to detect thickness of Ballast layer

[J]. Journal of the Korean Society for Railway, 2020, 23(3):269-278.

DOI:10.7782/JKSR.2020.23.3.269      URL     [本文引用: 1]

Surajit K.

A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application

[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 28(6):22-36.

[本文引用: 1]

张斯薇, 吴荣新, 韩子傲, .

双边滤波在探地雷达数据去噪处理中的应用

[J]. 物探与化探, 2021, 45(2):496-501.

[本文引用: 1]

Zhang S W, Wu R X, Han Z A, et al.

The application of bilateral filtering to denoise processing of ground penetrating radar data

[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.

[本文引用: 1]

王超, 沈斐敏.

小波变换在探地雷达弱信号去噪中的研究

[J]. 物探与化探, 2015, 39(2):421-424.

[本文引用: 1]

Wang C, Shen F M.

Study of wavelet transform in ground penetration radar weak signal denoising

[J]. Geophysical and Geochemical Exploration, 2015, 39(2):421-424.

[本文引用: 1]

Wenchao H, Tong H, Hainan K, et al.

Joint time-frequency analysis of ground penetrating radar data based on variational mode decomposition

[J]. Journal of Applied Geophysics, 2020, 23(7):164-181.

[本文引用: 1]

Mansi A H, Castillo M P, Bernasconi G.

Controlled laboratory test for the investigation of LNAPL contamination using a 2.0 GHz ground penetrating radar

[J]. Bollettino Di Geofisica Teorica Ed Applicata, 2017, 58(3):169-180.

[本文引用: 1]

Yang J, Yun L D.

2D wavelet decomposition and F-K migration for identifying fractured rock areas using Ground Penetrating Radar

[J]. Remote Sensing, 2021, 13(6):2280-2299.

DOI:10.3390/rs13122280      URL     [本文引用: 1]

The quality of the surrounding rock is crucial to the stability of underground caverns, thereby requiring an effective monitoring technology. Ground-penetrating radar (GPR) can reconstruct the subterranean profile by electromagnetic waves, but two significant issues, called clutter and hyperbola tails, affect the signal quality. We propose an approach to identify fractured rocks using 2D Wavelet transform (WT) and F-K migration. F-K migration can handle the hyperbola using Fourier analysis. WT can mitigate clutter, distinguish signal discontinuity, and provide signals with a good time-frequency resolution for F-K migration. In the simulation, the migration result from horizontal detail coefficients highlight the crack locations and reduce the scattering signals. Noise has been separated by 2D WT. Hyperbola tails are decomposed to vertical and diagonal detail coefficients. Similar promising results have been achieved in the field measurement. Therefore, the proposed approach can process GPR signals for identifying fractured rock areas.

Christine D, Sajad J.

Resolution enhancement of deconvolved ground penetrating radar images using singular value decomposition

[J]. Journal of Applied Geophysics, 2021, 25(6):193-200.

[本文引用: 1]

薛策文, 冯晅, 李晓天, .

全极化探地雷达多极化数据融合分析研究

[J]. 雷达学报, 2021, 10(1):74-85.

[本文引用: 1]

Xue C W, Feng X, Li X T, et al.

Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar

[J]. Journal of Radars, 2021, 10(1):74-85.

[本文引用: 1]

Brocker B, Dowdy J L, Anderson D T.

Generative adversarial networks for ground penetrating radar in hand held explosive hazard detection

[C]// Detection and Sensing of Mines,Explosive Objects,and Obscured Targets, 2018.

[本文引用: 1]

齐轩晨. 面向道路检测的探地雷达系统设计与实现[D]. 南京: 南京邮电大学, 2019.

[本文引用: 1]

Qi X C. Design and implementation of ground penetrating radar system for road detection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.

[本文引用: 1]

周炀. 基于FPGA的浅地表电磁探测实时数据处理技术研究[D]. 长春: 吉林大学, 2020.

[本文引用: 1]

Zhou Y. Researh on the real-time data processing technology for shallow surface electromagnetic detection based on FPGA[D]. Changchun: Jilin University, 2020.

[本文引用: 1]

何兴坤. 单通道脉冲探地雷达系统软件设计与开发[D]. 武汉: 华中科技大学, 2019.

[本文引用: 1]

He X K. Software design and development of single channel impulse ground penetrating radar system[D]. Wuhan: Huazhong University of Science and Technology, 2019.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com