Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 377-383    DOI: 10.11720/wtyht.2023.1110
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于大型低频可控震源的超深储层广角反射采集技术
苏海1,2(), 乔金1,2, 张忠楠3, 杜中东4, 张永豪1,2, 赵挥5, 李爱荣1,2
1.西安石油大学 地球科学与工程学院,陕西 西安 710065
2.陕西省油气成藏地质学重点试验室,陕西 西安 710065
3.陕西省榆林市榆阳区第二采气厂作业七区,陕西 榆林 719054
4.中国石油集团东方地球物理公司 长庆物探处,陕西 西安 710016
5.长庆油田采气三厂第三处理厂,陕西 西安 710018
Wide-angle reflection acquisition technology for ultradeep reservoirs based on large-scale low-frequency vibroseis
SU Hai1,2(), QIAO Jin1,2, ZHANG Zhong-Nan3, DU Zhong-Dong4, ZHANG Yong-Hao1,2, ZHAO Hui5, LI Ai-Rong1,2
1. School of Earth Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2. Key Laboratory of Hydrocarbon Accumulation of Shaanxi Province, Xi'an 710065, China
3. The Seventh District of the Second Gas Production Plant in Yuyang District, Yulin City, Shaanxi Province,Yulin 719054,Cina
4. Changqing Geophysical Department,BGP Inc,CNPC, Xi'an 710016, China
5. The Third Treatment Plant of the Third Gas Production Plant of Changqing Oilfield, Xi'an 710018,China
全文: PDF(10717 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着超深储层的油气勘探力度不断加大,针对复杂的表层结构和地下地质构造地区,常规地震勘探方法难以获取信噪比较高的有效反射信息,地震资料成像效果差,地震剖面难以清楚刻画工区的地质构造。因此,基于大型低频可控震源激发技术,根据野外采集要求,结合地质任务,选择采用高密度二维广角反射地震观测系统进行地震资料采集,通过广角地震波数值模拟和野外试验工作,优选出适合本工区的野外采集参数。研究结果表明,基于大型低频可控震源的超深储层广角反射采集技术,能够获得较强能量的远偏移距处的弱反射地震信号,特别是深层的低频信息,有效地提高了地震资料信噪比。相对于常规地震叠加剖面,广角反射地震叠加剖面品质得到明显改善,同相轴连续,构造部位清晰可见,地震成像效果良好。野外生产实践证明,广角反射地震勘探技术对超深层油气勘探具有重要的应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏海
乔金
张忠楠
杜中东
张永豪
赵挥
李爱荣
关键词 超深储层可控震源广角反射采集参数成像效果    
Abstract

With the intensification of hydrocarbon exploration in ultradeep reservoirs, conventional seismic exploration methods are no longer applicable to areas with complex surface structures and underground geological structures because they are difficult to acquire effective reflection information with high signal-to-noise ratio, the imaging effects of seismic data are poor, seismic profiles fail to clearly present the geological structures of study areas. Based on the large-scale low-frequency vibroseis excitation technology, the field acquisition requirements, and geological tasks, this study adopted a high-density two-dimensional wide-angle reflection seismic observation system to collect seismic data. This study selected the optimal field acquisition parameters suitable for the study area through numerical simulation of wide-angle seismic waves and field tests. As indicated by the results of this study, the wide-angle reflection acquisition technology for ultradeep reservoirs based on large-scale low-frequency vibroseis can acquire weakly reflected seismic signals at locations with far offset and strong energy, especially the deep low-frequency information, thus effectively improving the signal-to-noise ratio of seismic data. Compared with conventional seismic stacked sections, the wide-angle reflection seismic stacked sections have significantly improved quality, continuous events, clearly visible structural parts, and encouraging seismic imaging effects. The field production practices dominate that the wide-angle reflection seismic exploration technology can be applied to ultradeep hydrocarbon exploration.

Key wordsultradeep reservoir    vibroseis    wide-angle reflection    acquisition parameter    imaging effect
收稿日期: 2022-03-17      修回日期: 2022-04-26      出版日期: 2023-04-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41772140);西安石油大学研究生创新与实践能力培养计划项目(YCS22113092)
引用本文:   
苏海, 乔金, 张忠楠, 杜中东, 张永豪, 赵挥, 李爱荣. 基于大型低频可控震源的超深储层广角反射采集技术[J]. 物探与化探, 2023, 47(2): 377-383.
SU Hai, QIAO Jin, ZHANG Zhong-Nan, DU Zhong-Dong, ZHANG Yong-Hao, ZHAO Hui, LI Ai-Rong. Wide-angle reflection acquisition technology for ultradeep reservoirs based on large-scale low-frequency vibroseis. Geophysical and Geochemical Exploration, 2023, 47(2): 377-383.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1110      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/377
Fig.1  低频可控震源扫描频率优选
Fig.2  低频可控震源台次优选
Fig.3  低频可控震源扫描长度优选
Fig.4  广角反射地质模型、目标层反射系数分析、模拟单炮记录及振幅系数能量分布
Fig.5  常规地震勘探与广角反射单炮记录及其频谱
Fig.6  常规地震测线和广角反射测线的叠加剖面对比
[1] 胡文瑞, 鲍敬伟, 胡滨. 全球油气勘探进展与趋势[J]. 石油勘探与开发, 2013, 40(4):409-413.
[1] Hu W R, Bao J W, Hu B. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4):409-413.
doi: 10.1016/S1876-3804(13)60052-X
[2] Goloshubin, Gennady M, Korneev. Seismic low-frequency effects from oil-saturated reservoir zones[C]// Salt Lake City: SEG International Exposition and Annual Meeting, 2002.
[3] Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2):120-127.
doi: 10.1190/1.1559038
[4] 谭晔, 罗丹. 陶知非潜心打造勘探利器[J]. 中国石油石化, 2020(18):72-74.
[4] Tan H, Luo D. Tao Z F to creat exploration weapon[J]. China Petrochem, 2020(18):72-74.
[5] 周锦钟, 张金海, 牛全兵, 等. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2):313-320.
[5] Zhou J Z, Zhang J H, Niu Q B, et al. Research on the application of key technologies for low-frequency vibroseis "two widths and one height" seismic data processing in Jiandingshan area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):313-320.
[6] 杨金华, 张焕芝. 非常规、深层、海洋油气勘探开发技术展望[J]. 世界石油工业, 2020, 27(6):20-26.
[6] Yang J H, Zhang H Z. Outlook on the exploration and development technologies of unconventional,deep and offshore oil and gas[J]. World Petroleum Industry, 2020, 27(6):20-26.
[7] Richards T C. Wide angle reflections and their application to fingding limestone structures in the footills of wetern Canada[J]. Geophysics, 1960, 25(2):385-407.
doi: 10.1190/1.1438709
[8] 杨智超, 张孟, 敬龙江, 等. 广角地震反射在四川盆地超深储层勘探中的应用[J]. 天然气勘探与开发, 2020, 43(4):62-68.
[8] Yang Z C, Zhang M, Jing L J, et al. Application of wide-angle seismic reflection to exploration of ultra deep reservoirs in Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(4):62-68.
[9] 张岩, 段孟川, 钟海, 等. 塔里木盆地超深层广角地震勘探技术实例与分析[C]// 中国石油学会2019年物探技术研讨会论文集,石油地球物理勘探编辑部, 2019:1310-1313.
[9] Zhang Y, Duan M C, Zhong H, et al. Example and analysis of ultra-deep wide-angle seismic exploration technology in Tarim Basin[C]// Proceedings of 2019 Symposium on Geophysical Exploration Technology,China Petroleum Society,Editorial Department of Petroleum Geophysical Exploration, 2019:1310-1313.
[10] 张军华, 张在金, 张彬彬, 等. 地震低频信号对关键处理环节的影响分析[J]. 石油地球物理勘探, 2016, 51(1):54-62,19.
[10] Zhang J H, Zhang Z J, Zhang B B, et al. Low frequency signal influences on key seismic data processing procedures[J]. Oil Geophysical Prospecting, 2016, 51(1):54-62,19.
[11] 武泗海, 赵虎, 尹成, 等. 广角地震反射特征及反演研究[J]. 石油地球物理勘探, 2017, 52(5):1005-1015,880-881.
[11] Wu S H, Zhao H, Ying C, et al. Wide-angle seismic reflection characteristics and inversion[J]. Oil Geophysical Prospecting, 2017, 52(5):1005-1015,880-881.
[12] 杨威, 周刚, 李海英, 等. 碳酸盐岩深层走滑断裂成像技术[J]. 新疆石油地质, 2021, 42(2):246-252.
[12] Yang W, Zhou G, Li H Y, et al. Seismic imaging technology for deep strike slip faults in carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(2):246-252.
[13] 沈媛媛, 郑恭明. 可控震源线性扫描信号仿真分析[J]. 物探装备, 2011, 21(4):211-214.
[13] Shen Y Y, Zheng G M. Simulation analysis of vibrator linear sweep signal[J]. Equipment for Geophysical Prospecting, 2011, 21(4):211-214.
[14] 王华忠. 客户定制反射子波的可控震源地震勘探方法[J]. 石油物探, 2020, 59(5):683-694.
doi: 10.3969/j.issn.1000-1441.2020.05.002
[14] Wang H Z. Vibroseis seismic exploration with customized wavelet[J]. Geophysical Prospecting for Petroleum, 2020, 59(5):683-694.
[15] 谢兴隆, 马雪梅, 龙慧, 等. 基于可控震源的中浅部地震勘探参数选择[J]. 物探与化探, 2021, 45(4):1004-1013.
[15] Xie X L, Ma X M, Long H, et al. Parameter selection of seismic exploration in middle and shallow areas based on vibroseis[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1004-1013.
[16] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3):686-691.
[16] Qiu Q L, Cao N W, Bai Y. Optimization of vibroseis excitation parameter and its application effect[J]. Geophysical and Geochemical Exploration, 2021, 45(3):686-691.
[17] 周晓冀, 杨智超, 石勇, 等. 川西地区超深层广角反射地震勘探技术研究与应用[C]// 第31届全国天然气学术年会(2019)论文集, 2019:138-143.
[17] Zhou X Y, Yang Z C, Shi Y, et al. Research and application of ultra-deep wide-angle reflection seismic exploration technology in western Sichuan[C]// Proceedings of the 31st National Natural Gas Academic Annual Conference (2019), 2019:138-143.
[18] 徐文君, 於文辉, 胡中平. 广角反射波的特征及正演模拟[J]. 石油地球物理勘探, 2006(4):390-395,492,356.
[18] Xu W J, Yu W H, Hu Z P. Feature and forward simulation of wide-angle Reflection[J]. Oil Geophysical Prospecting, 2006(4):390-395,492,356.
[19] 倪宇东, 杜中东, 王彦铎, 等. 基于超深目的层的广角地震采集及处理技术[C]// 2018年中国地球科学联合学术年会论文集(四十三)——专题93: 超深层(油气)重磁电震勘探技术、专题94:深部预测方法, 2018:61-63.
[19] Ni Y D, Du Z D, Wang Y D, et al. Wide-angle seismic acquisition and processing technology based on ultra-deep target layer[C]// Proceedings of the 2018 China Geosciences Joint Academic Annual Conference (forty-three)-Topic 93:Ultra-deep (oil and gas) Gravity Magnetic Electroseismic Exploration Technology,Topic 94:Deep Prediction Methods, 2018:61-63.
[1] 苏云, 游洪文, 李令喜, 孟凡冰, 李敏杰, 唐娟, 谢金丽. 沙漠区可控震源采集资料“黑三角”强能量噪声压制技术[J]. 物探与化探, 2022, 46(2): 410-417.
[2] 谢兴隆, 马雪梅, 龙慧, 李秋辰, 郭淑君, 程正璞. 基于可控震源的中浅部地震勘探参数选择[J]. 物探与化探, 2021, 45(4): 1004-1013.
[3] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3): 686-691.
[4] 孙海川. 可控震源地震采集技术在H探区煤炭勘查中的实验[J]. 物探与化探, 2020, 44(1): 42-49.
[5] 吴华, 张保卫, 王凯, 岳航羽, 张凯. 哈拉湖地区浅层地震勘探可控震源激发参数对比试验[J]. 物探与化探, 2018, 42(5): 1033-1041.
[6] 柴童, 韩文功, 毕明波. 一种可控震源非线性扫描信号设计方法及应用[J]. 物探与化探, 2018, 42(4): 753-758.
[7] 王文忠, 孙海川, 刘永亮. 黄土塬LA勘查区煤田地震勘探采集技术[J]. 物探与化探, 2018, 42(4): 689-696.
[8] 杨全斌, 刘凤智, 吴永国, 欧荣生, 张立军. 可控震源零相位转换问题探讨[J]. 物探与化探, 2018, 42(3): 555-559.
[9] 肖云飞, 殷厚成. 基于溶洞体照明分析的采集参数论证[J]. 物探与化探, 2017, 41(2): 270-277.
[10] 孙海川, 刘永亮, 李健. 二维地震采集参数的选择——以潮水盆地HW勘查区为例[J]. 物探与化探, 2016, 40(6): 1144-1150.
[11] 郭淑君, 任政委, 龙慧, 侯延华, 雷鸣. 隆尧地裂缝调查中的物探关键技术[J]. 物探与化探, 2015, 39(2): 401-407.
[12] 郑恭明, 雷雪梅, 张海, 陈志方. 基于MATLAB GUI的可控震源信号发生器研究与仿真[J]. 物探与化探, 2013, 37(1): 160-164.
[13] 裴全理. 也门71区山地激发技术[J]. 物探与化探, 2012, 36(3): 409-413.
[14] 郑恭明, 张海, 雷雪梅, 孙祥娥. 基于片上可编程系统的可控震源扫描信号研究与设计[J]. 物探与化探, 2012, 36(3): 490-495.
[15] 刘冠军. 改善可控震源地震记录质量的方法[J]. 物探与化探, 2011, 35(4): 521-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com