Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 365-371    DOI: 10.11720/wtyht.2023.1392
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
钻孔雷达在探测井下煤层顶底板界面中的应用
刘四新(), 师伟, 宋梓豪, 陈春林, 代郑
吉林大学 地球探测科学与技术学院,吉林 长春 130026
Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar
LIU Si-Xin(), SHI Wei, SONG Zi-Hao, CHEN Chun-Lin, DAI Zheng
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
全文: PDF(3287 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在煤矿生产中,准确判断煤层顶底板位置、识别对采掘安全存在威胁的地质构造是保障煤矿安全生产的重要举措。为此,提出一种针对煤层顶底板探测的方法技术,包括基于工作面的煤矿井下钻孔雷达探测方法和数据处理流程,并将其应用于实际工作。首先,对采集自新元煤矿某工作面钻孔内的实测钻孔雷达数据进行零时刻校正、直流消除、带通滤波、去直达波、增益等处理,实现了雷达剖面的去噪和增强;然后,通过速度拾取、反射面提取、绕射叠加偏移和时深转换、翻转拼接和钻孔轨迹校正等一系列处理解释,实现了对煤矿井下煤层顶底板位置的拾取和显示。该技术的提出为煤矿安全运营提供了一种有效手段,具有推广价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘四新
师伟
宋梓豪
陈春林
代郑
关键词 钻孔雷达煤层反射面提取煤层顶底板位置    
Abstract

In coal mining, the accurate determination of the locations of the footwalls and roofs of coal seams and the identification of the geological structures that threaten the safety of excavation are important measures to ensure safe coal mining. This study proposed a technique for detecting the footwalls and roofs of coal seams, which consisted of a mining face-based borehole radar detection method for underground coal mines and a data processing process. Then, this study applied this technique to the Xinyuan coal mine. Specifically, radar profiles were denoised and enhanced through the correction of zero-moment point, DC elimination, band-pass filtering, direct wave removal, and gain processing of measured borehole radar data of boreholes along a mining face of the Xinyuan coal mine. Then, the locations of the roofs and footwalls of coal seams in the underground coal mines were identified and presented through a series of processing and interpretation, including velocity pickup, reflective surface extraction, and diffraction stack migration, as well as time-depth conversion, flipping, splicing, and the correction of borehole trajectories. The technique proposed in this study serves as an effective means for the safe operation of coal mines and thus is of value for promotion.

Key wordsborehole radar    coal seam    reflective surface extraction    locations of the top and bottom of coal seams
收稿日期: 2022-08-15      修回日期: 2022-10-10      出版日期: 2023-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“基于均匀圆阵(UCAA);“钻孔雷达探测中盲目标的致盲机理及探测方法研究”(41874136)
引用本文:   
刘四新, 师伟, 宋梓豪, 陈春林, 代郑. 钻孔雷达在探测井下煤层顶底板界面中的应用[J]. 物探与化探, 2023, 47(2): 365-371.
LIU Si-Xin, SHI Wei, SONG Zi-Hao, CHEN Chun-Lin, DAI Zheng. Identification of footwalls and roofs of coal seams in underground coal mines using borehole radar. Geophysical and Geochemical Exploration, 2023, 47(2): 365-371.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1392      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/365
Fig.1  煤层中单孔反射测量示意
Fig.2  速度估算模型示意
Fig.3  处理与解释方法及流程
Fig.4  实测数据处理结果
Fig.5  实测数据波速估算结果
Fig.6  实测数据的拾取、偏移、合并和钻孔轨迹校正
Fig.7  雷达与回采测得的顶底板位置对比
深度/m
4 6 8 10 12 14
顶板误差/m 0.05 0.15 0.15 0.25 0.30 0.40
底板误差/m 0.30 0.20 0.50 0.40 0.25 0
Table 1  雷达与回采测得的顶底板位置误差
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
[1] National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2020.
[2] 宁小亮. 2013—2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化, 2020, 46(7):34-41.
[2] Ning X L. Law analysis and counter measures research of coal mine accidents in China from 2013 to 2018[J]. Industry and Mine Automation, 2020, 46(7):34-41.
[3] 张传来, 宋敏. 顶板事故的地质原因分析[J]. 采矿与岩层控制工程学报, 2006, 11(5):59-60,91.
[3] Zhang C L, Song M. Geological cause analysis of roof disaster[J]. Journal of Mining And Strata Control Engineering, 2006, 11(5):59-60,91.
[4] Cook J C. Borehole-radar exploration in a coal seam[J]. Geophy-sics, 1977, 42(6):1254-1257.
[5] 王国彪, Mowrey G L. 前景广大的煤界面探测法[J]. 煤矿自动化, 1992(3):57-60.
[5] Wang G B, Mowrey G L. The promising coal interface detection method[J]. Journal of Mine Automation, 1992(3):57-60.
[6] 虎维岳, 南生辉. 雷达探测技术及应用[J]. 煤田地质与勘探, 1997, 25(S1):68-71.
[6] Hu W Y, Nan S H. Radar measurement technique and application[J]. Coal Geology & Exploration, 1997, 25(S1):68-71.
[7] 宋雷, 黄家会, 杨维好. 钻孔地质雷达工作原理及应用[J]. 物探与化探, 1999, 23(6):454-458.
[7] Song L, Huang J H, Yang W H. The principle and application of geological dillhole radar[J]. Geophysical and Geochemical Exploration, 1999, 23(6):454-458.
[8] 黄家会, 宋雷, 崔广心, 等. 应用跨孔雷达层析成像技术研究深部岩层特性[J]. 中国矿业大学学报, 1999, 28(6):61-64.
[8] Huang J H, Song L, Cui G X, et al. Application of crosshole radar tomography in studying characteristics of strata in depths[J]. Journal of China University of Mining & Technology, 1999, 28(6):61-64.
[9] 王驹, 陈伟明, 张鹏, 等. 钻孔雷达在高放废物处置库场址评价中的应用——以北山1号孔为例[J]. 铀矿地质, 2005, 21(6):42-45.
[9] Wang J, Chen W M, Zhang P, et al. Application of borehole radar to site characterization of high-level radioactive waste repository:Taking Beishan borehole No.1 as an example[J]. Uranium Geology, 2005, 21(6):42-45.
[10] 钟声, 王川婴, 吴立新, 等. 点状不良地质体钻孔雷达响应特征的形状效应正演分析[J]. 岩土力学, 2011, 32(5):1583-1588.
[10] Zhong S, Wang C Y, Wu L X, et al. Borehole radar response characteristics of point unfavorable geo-bodies:Forward simulation on its geometric effect[J]. Rock and Soil Mechanics, 2011, 32(5):1583-1588.
[11] 朱成成. 钻孔雷达电磁波传播及异常地质体探测[D]. 长春: 吉林大学, 2018.
[11] Zhu C C. Propagation of borehole radar's elec-tromagnetic wave and detection to abnormal geo-bodies[D]. Changchun: Jilin University, 2018.
[12] 刘四新, 宋梓豪, 程建远, 等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质, 2021, 40(3):711-720.
[12] Liu S X, Song Z H, Cheng J Y, et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. World Geology, 2021, 40(3):711-720.
[13] 曾昭发, 刘四新, 冯晅, 等. 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
[13] Zeng Z F, Liu S X, Feng X, et al. Ground-penetrating radar principles and applications[M]. Beijing: Publishing House of Electronics Industry, 2010.
[14] 闫维存. 碳酸盐岩裂缝构造的钻孔雷达响应规律研究[D]. 长春: 吉林大学, 2021.
[14] Yan W C. Borehole Radar Response Research to Carbonate Fracture[D]. Changchun: Jilin University, 2021.
[15] 王培, 刘柯, 王选琳, 等. “钻孔雷达+钻孔电视”精细化探测技术的应用[J]. 采矿技术, 2021, 21(3):148-150,160.
[15] Wang P, Liu K, Wang X L, et al. Application of “borehole radar + borehole TV” refined detection technology[J]. Mining Technology, 2021, 21(3):148-150,160.
[16] 冯晅, 曾昭发, 刘四新, 等. 探地雷达信号处理[M]. 北京: 科学出版社, 2014:182.
[16] Feng X, Zeng Z F, Liu S X, et al. Ground-penetrating radar signal processing[M]. Beijing: Science Press, 2014:182.
[17] 何樵登, 韩立国, 王德利. 地震勘探[M]. 北京: 地质出版社, 2009:220.
[17] He Q D, Han L G, Wang D L. Seismic exploration[M]. Beijing: Geological Publishing House, 2009:220.
[18] Fisher E, McMechan G A, Annan A P. Acquisition and processing of wide-aperture ground-penetrating radar data[J]. Geophysics, 1992, 57(3):495-504.
doi: 10.1190/1.1443265
[19] Maijala P. Application of some seismic data processing methods to ground penetrating radar data[J]. Special Paper-Geological Survey of Finland, 1992(16):103-110.
[20] 张理轻, 马晔, 杨宇. 钻孔雷达数据处理技术及分析[J]. 地震工程学报, 2014, 36(4):1107-1112.
[20] Zhang L Q, Ma Y, Yang Y. Study on data processing techniques of borehole radar[J]. China Earthquake Engineering Journal, 2014, 36(4):1107-1112.
[21] 胜利油田地质处,胜利油田地调指挥部. 绕射扫描叠加[J]. 石油地球物理勘探, 1974, 9(5):1-40.
[21] Shengli Oilfield Geology Division, Shengli Oilfield Ground Investigation Command. Wrap-around scanning superimposed[J]. Oil Geophysical Prospecting, 1974, 9(5):1-40.
[22] 王小龙, 张甲迪. 煤矿井下钻孔测斜原理及轨迹计算方法[J]. 煤炭技术, 2020, 39(1):72-75.
[22] Wang X L, Zhang J D. Borehole inclination measuring principle and borehole trajectory calculation method in underground coal mine[J]. Coal Technology, 2020, 39(1):72-75.
[23] 王选琳, 刘柯, 郭召昌. 矿用钻孔地质雷达在打通一煤矿井下的试用验证[J]. 山东煤炭科技, 2020, 38(10):173-175.
[23] Wang X L, Liu K, Guo Z C. Test and verification of mine borehole geological radar in datong No.1 mine[J]. Shandong Coal Science and Technology, 2020, 38(10):173-175.
[1] 郭建宏, 杜婷, 张占松, 肖航, 秦瑞宝, 余杰, 王灿. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3): 768-777.
[2] 郭建宏, 张占松, 张超谟, 周雪晴, 肖航, 秦瑞宝, 余杰. 用地球物理测井资料预测煤层气含量——基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探, 2021, 45(1): 18-28.
[3] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
[4] 郭建宏, 张占松, 张超谟, 陈芷若, 张鹏浩, 汤潇, 秦瑞宝, 余杰. 基于灰色系统与测井方法的煤层气含量预测及应用[J]. 物探与化探, 2020, 44(5): 1190-1200.
[5] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
[6] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[7] 陈彦虎, 陈佳. 波形指示反演在煤层屏蔽薄砂岩分布预测中的应用[J]. 物探与化探, 2019, 43(6): 1254-1261.
[8] 梁亚林, 原文涛. 测井预测煤层气含量及分布规律——以山西省沁水煤田为例[J]. 物探与化探, 2018, 42(6): 1144-1149.
[9] 刘四新, 王文天, 鹿琪, 李宏卿, 傅磊. 基于反正切法的定向钻孔雷达三维成像算法[J]. 物探与化探, 2018, 42(2): 358-362.
[10] 王建青, 杨晓东, 田忠斌, 申有义. 基于地震频谱属性的煤层厚度预测方法[J]. 物探与化探, 2017, 41(2): 364-368.
[11] 陈浙春, 蒋涛, 汤玉平, 李吉鹏, 程同锦, 王国建. 油气化探在鄂尔多斯盆地延川煤层气勘探中的应用[J]. 物探与化探, 2016, 40(2): 318-326.
[12] 张瑞, 陈刚, 潘保芝, 蒋必辞, 杨雪, 刘丹. 基于细菌觅食优化广义回归神经网络的煤层气含量预测[J]. 物探与化探, 2016, 40(2): 327-332.
[13] 魏文希, 师素珍, 孙超, 李世杰. 拟声波反演技术在识别煤层顶底板砂泥岩中的应用[J]. 物探与化探, 2016, 40(1): 220-224.
[14] 吴基文, 沈书豪, 翟晓荣, 魏大勇, 张平松, 韩云春. 煤层底板注浆加固效果波速探查与评价[J]. 物探与化探, 2014, 38(6): 1302-1306.
[15] 祁雪梅, 董守华. 地震相技术在煤层气勘探中的应用[J]. 物探与化探, 2012, 36(2): 170-173,179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com