Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1371-1378    DOI: 10.11720/wtyht.2023.1488
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
河南省洛阳市土壤硒全量、有效性及形态分布特征
田强国1(), 侯进凯1, 杨在伟2,3, 李立园2,3()
1.河南省地质矿产勘查开发局 第一地质矿产调查院,河南 洛阳 471023
2.浙江科技学院 环境与资源学院,浙江 杭州 310023
3.浙江省废弃生物质循环利用与生态处理技术重点实验室,浙江 杭州 310023
Distributions of the total concentration, bioavailability, and speciation of selenium in soils in Luoyang City, Henan Province, China
TIAN Qiang-Guo1(), HOU Jin-Kai1, YANG Zai-Wei2,3, LI Li-Yuan2,3()
1. Institute of Geology and Mineral Resources Survey, Henan Bureau of Geology and Mineral Development, Luoyang 471023, China
2. School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
3. Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, China
全文: PDF(2826 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文调查了河南省洛阳市土壤硒资源,分析了洛阳市不同地质背景、土壤类型、土地利用方式、酸碱性及有机质土壤中全硒含量分布特征,测定了土壤中硒的有效性及化学形态分布。结果显示,洛阳市土壤全硒含量范围介于(0.03 ~ 5.67)×10-6,平均值为0.30×10-6,适量和高硒土壤面积占研究区的94.73%;区内蓟县系云梦山组土壤硒平均含量最高,寒武系辛集组土壤硒平均含量最低;砂姜黑土中全硒平均含量最高,而水稻土全硒平均含量最低;不同土地利用方式中,水田和有林地土壤中全硒平均含量较高;土壤酸性和有机质含量高的条件下有利于硒的富集;不同类型土壤中,潮土中有效态硒的平均含量最高,红黏土中有效态硒的平均含量最低;碱性土壤中有效硒平均含量高于中性和酸性土壤;土壤中硒主要以残渣态、强有机结合态和腐殖酸结合态存在,碱性土壤和红黏土中生物可利用态硒的平均含量最高。洛阳市土壤硒资源具有较大利用潜力,可依据研究区域全硒含量分布特征开展具有针对性的富硒产业发展规划。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田强国
侯进凯
杨在伟
李立园
关键词 土壤有效性化学形态    
Abstract

Targeting the selenium resource in soils of Luoyang City, Henan Province, this study analyzed the distribution of total selenium concentration under different geological settings, soil types, land use types, acidity and alkalinity, and organic matter. Furthermore, it determined the bioavailability and speciation distribution of selenium in the soils. The results indicate that: (1) The soils in Luoyang City have total selenium concentrations of (0.03~5.67)×10-6, with an average of 0.30×10-6, and the area of soils with moderate and rich selenium accounts for 94.73%; (2) The average selenium concentration is the highest in soils of the Jixian Yunmengshan formation and the lowest in soils of the Cambrian Xinji Formation; (3) The average total selenium concentration is the highest in lime concretion black soil and the lowest in paddy soil; (4) Regarding land use types, the average total selenium concentration is relatively high in soils of paddy land and woodland; (5) Soils with high acidity and high organic matter concentrations are favorable for selenium enrichment; (6) In terms of soil types, the average concentration of bioavailable selenium is the highest in fluvo-aquic soils and the lowest in red clays; (7) The average concentration of bioavailable selenium is higher in alkaline soils than in neutral and acidic soils; (8) Selenium in soils primarily occurs in residue, strong organic bound, and humic acidic bound forms, with the highest average concentration of bioavailable selenium occurring in alkaline soils and red clays. The selenium resource in the soils in Luoyang City has high utilization potential, and it is feasible to conduct targeted development and planning of the selenium-rich industry according to the distribution of total selenium concentration in the study area.

Key wordssoil    selenium    bioavailability    speciation
收稿日期: 2022-09-25      修回日期: 2023-02-17      出版日期: 2023-10-20
ZTFLH:  P962  
基金资助:洛阳市自然资源和规划局洛阳市硒资源详查项目(洛公交易采购[2018]053号)
通讯作者: 李立园
作者简介: 田强国(1981-),男,中级工程师,主要从事地球化学、地质矿产方面的工作。Email:527013743@qq.com
引用本文:   
田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
TIAN Qiang-Guo, HOU Jin-Kai, YANG Zai-Wei, LI Li-Yuan. Distributions of the total concentration, bioavailability, and speciation of selenium in soils in Luoyang City, Henan Province, China. Geophysical and Geochemical Exploration, 2023, 47(5): 1371-1378.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1488      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1371
编号 形态 提取剂 操作步骤
F1 水溶态 蒸馏水 25 mL,摇匀,振荡30 min,离心20 min,过滤
F2 离子交换态 1 mol/L氯化镁溶液 25 mL,摇匀,振荡30 min,离心20 min,过滤
F3 碳酸盐结合态 1 mol/L醋酸钠溶液 25 mL,摇匀,振荡1 h,放置2 h,离心20 min,过滤
F4 腐殖酸结合态 0.1 mol/L焦磷酸钠溶液 50 mL,摇匀,振荡40 min,离心20 min,过滤
F5 铁锰氧化态 0.25 mol/L盐酸羟胺—盐酸混合液 50 mL,摇匀,振荡1 h,离心20 min,过滤
F6 强有机结合态 30%过氧化氢、(1+1)硝酸溶液和
3.2 mol/L醋酸铵—硝酸混合液
3 mL浓硝酸, 5 mL过氧化氢,摇匀,83 ℃恒温水浴1.5 h,补3 mL过
氧化氢,恒温水浴70 min,加入2.5 mL醋酸铵—硝酸溶液,稀释至
25 mL,放置10 h,离心20min,过滤
F7 残渣态 浓硝酸—高氯酸溶液 取F6残渣加15 mL浓硝酸和3 mL高氯酸消煮
Table 1  土壤中硒化学形态分析步骤
Fig.1  不同行政区土壤全硒分布特征
注:柱高为算数平均值,误差线为校准差,n为样本数量;下同
Fig.2  不同地质背景土壤全硒分布特征
JY—蓟县系云梦山组;DQ—全新统;ES—二叠系石盒子组;DS—上更新统;XD—新近系大安组;XL—新近系洛阳组;JB—蓟县系北大尖组;DZ—中更新统;SL—三叠系刘家沟组;GC—古近系陈宅沟组;JC—蓟县系白草坪组;HX—寒武系辛集组
Fig.3  不同类型土壤全硒分布特征
Fig.4  不同土地利用方式土壤全硒分布特征
Fig.5  不同酸碱性土壤全硒分布特征
丰缺等级 有机质/% 样本数 最小值/10-6 最大值/10-6 平均值/10-6 标准差/10-6
极高 >4.00 51 0.311 5.670 0.802 0.789
3.01~4.00 168 0.253 1.660 0.489 0.188
中上 2.01~3.00 1963 0.171 1.333 0.350 0.088
1.01~2.00 3204 0.066 1.166 0.269 0.062
0.60~1.00 279 0.058 0.443 0.138 0.046
极低 <0.60 129 0.033 0.207 0.083 0.033
Table 2  不同有机质含量土壤全硒分布特征
Fig.6  不同类型土壤有效态硒分布特征
Fig.7  不同酸碱性土壤硒形态百分比含量
Fig.8  不同类型土壤硒形态百分比含量
[1] Mao J, Pop V J, Bath S C, et al. Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency[J]. European Journal of Nutrition, 2016, 55 (1):55-61.
doi: 10.1007/s00394-014-0822-9 pmid: 25524327
[2] Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability:A review[J]. Geoderma, 2017, 295:69-79.
doi: 10.1016/j.geoderma.2017.02.019
[3] Schwarz K, Foltzs C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration[J]. Nutrition, 2002, 79(12):3292-3293.
[4] Shi Z M, Pan P J, Feng Y W, et al. Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan,China[J]. Environment International, 2017, 99:282-292.
doi: 10.1016/j.envint.2016.12.006
[5] 周越, 吴文良, 孟凡乔, 等. 土壤中硒含量、形态及有效性分析[J]. 农业资源与环境学报, 2014, 31(6):527-532.
[5] Zhou Y, Wu W L, Meng F Q, et al. Review on the content,specification of selenium and its availability in soil[J]. Journal of Agricultural Resources and Environment, 2014, 31(6):527-532.
[6] Preedy V R. Selenium:Chemistry,Analysis, Function and Effects[M]. London: Royal Society of Chemistry, 2015.
[7] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3):750-760.
[7] Xing R H. Geochemical characteristics and genesis of selenium in soil in Xuancheng City,Anhui Province[J]. Geophysical and Geochemical Exploration, 2022, 46(3):750-760.
[8] Tan L C, Nancharaiah Y V, Hullebusch E V, et al. Selenium:Environmental significance,pollution,and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5):886-907
doi: 10.1016/j.biotechadv.2016.05.005
[9] Panchal S K, Wanyonyi S, Brown L. Selenium,vanadium,and chromium as micronutrients to improve metabolic syndrome[J]. Current Hypertension Reports, 2017, 19(3):10.
doi: 10.1007/s11906-017-0701-x pmid: 28197835
[10] 彭晓敏, 高愈希. 自然界中的硒及其生物学效应[J]. 化学教育, 2019, 40(17):1-8.
[10] Peng X M, Gao Y X. Selenium in nature and its biological effects[J]. Chinese Journal of Chemical Education, 2019, 40(17):1-8.
[11] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3):319-336.
[11] Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3):319-336.
[12] Wang J, Li H R, Yang L S, et al. Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area[J]. Environmental Geochemistry and Health, 2017, 39(1):221-229.
doi: 10.1007/s10653-016-9823-3 pmid: 27071616
[13] Ullah H, Liu G, Yousaf B, et al. Developmental selenium exposure and health risk in daily foodstuffs:A systematic review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2018, 149,291-306.
doi: 10.1016/j.ecoenv.2017.11.056
[14] 谢薇, 杨耀栋, 侯佳渝, 等. 天津市蓟州区土壤硒的有效性及影响因素[J]. 环境化学, 2019, 38(10):2306-2316.
[14] Xie W, Yang Y D, Hou J Y, et al. Bioavailability of selenium and its influencing factors in soil of Jizhou District,Tianjin[J]. Environmental Chemistry, 2019, 38(10):2306-2316.
[15] 唐世琪, 刘秀金, 杨珂, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(8):3913-3923.
[15] Tang S Q, Liu X J, Yang K, et al. Migration,transformation characteristics,and ecological risk evaluation of heavy metal fractions in cultivated soil profiles in a typical carbonate-covered area[J]. Environmental Science, 2021, 42(8):3913-3923.
[16] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京.地质出版社, 2020:26-41,17.
[16] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing.Geological Press, 2020:26-41,17
[17] Donald J L. Trace metals in soils,plants and animals[J]. Advances in Agronomy, 1972, 24:267-325.
[18] Forgyce F M. Selenium deficiency and toxicity in the environment[J]. Essentials of Medical Geology, 2013, 5:375-416.
[19] 杨琼, 侯青叶, 顾秋蓓, 等. 广西武鸣县典型土壤剖面Se的地球化学特性及其影响因素研究[J]. 现代地质, 2016, 30(2):455-462.
[19] Yang Q, Hou Q Y, Gu Q B, et al. Study of geochemical characteristics and influencing factors of soil selenium in the typical soil profiles in Wuming county of Guangxi[J]. Geoscience, 2016, 30(2):455-462.
[20] 张春来, 杨慧, 黄芬, 等. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6):1497-1503.
[20] Zhang C L, Yang H, Huang F, et al. Distribution and influencing factors of selenium content in soil in Karst areas in Mashan county,Guangxi,China[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1497-1503.
[21] 毛香菊, 刘璐, 程新涛, 等. 河南新密典型富硒区土壤Se元素地球化学特征及空间分布规律[J]. 地质通报, 2021, 40(10):1664-1670.
[21] Mao X J, Liu L, Cheng X T, et al. Geochemical characteristics and spatial distribution of soil Se elements in typical Se-enriched areas in Xinmi,Henan[J]. Geological Bulletin, 2021, 40(10):1664-1670.
[22] 张建东, 王丽, 王浩东, 等. 紫阳县土壤硒的分布特征研究[J]. 土壤通报, 2017, 48(6):1404-1408.
[22] Zhang J D, Wang L, Wang H D, et al. Study on the distribution characteristics of soil selenium in Ziyang County[J]. Soil Bulletin, 2017, 48(6):1404-1408.
[23] 龚仓, 王亮, 王顺祥, 等. 四川成都市唐昌镇土壤硒分布特征及影响因素[J]. 土壤学报, 2022, 41(3):473-450.
[23] Gong C, Wang L, Wang S X, et al. Characteristics and influencing factors of soil selenium distribution in Tangchang Town,Chengdu,Sichuan[J]. Soil Journal, 2022, 41(3):473-450.
[24] 戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015, 52(6):1356-1364.
[24] Dai H M, Gong C D, Dong B, et al. Distribution of soil selenium in the Northeast China plant and its influencing factors[J]. Acta Pedologica Sinica, 2015, 52(6):1356-1364.
[25] 梁东丽, 彭琴, 崔泽玮, 等. 土壤中硒的形态转化及其对有效性的影响研究进展[J]. 生物技术进展, 2017, 7(5):374-380.
doi: 10.19586/j.2095-2341.2017.0086
[25] Liang D L, Peng Q, Cui Z W, et al. Progress on selenium bioavailibility and influential factors in soil[J]. Current Biotechnology, 2017, 7(5):374-380.
doi: 10.19586/j.2095-2341.2017.0086
[26] 王志强, 杨建锋, 魏丽馨, 等. 石嘴山地区碱性土壤硒地球化特征及生物有效性[J]. 物探与化探, 2022, 46(1):229-237.
[26] Wang Z Q, Yang J F, Wei L X, et al. Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area,Ningxia[J]. Geophysical and Geochemical Exploration, 2022, 46(1):229-237.
[27] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5):837-849.
[27] Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan island[J]. Geoscience, 2012, 26(5):837-849.
[28] 李永华, 王五一. 硒的土壤环境化学研究进展[J]. 土壤通报, 2002, 33(3):230-233.
[28] Li Y H, Wang W Y. Process on the study soil environmental chemistry of selenium[J]. Chinese Journal of Soil Science, 2002, 33(3):230-233.
[29] 陈继平, 任蕊, 王晖, 等. 关中塿土地区土壤pH变化对硒形态及其有效性的影响[J]. 西北地质, 2020, 53(1):244-260.
[29] Chen J P, Ren X, Wang H, et al. Effect of Lou soil pH change on selenium forms and availability[J]. Northwestern Geology, 2020, 53(1):244-260.
[30] 瞿建国, 徐伯兴, 龚书椿. 上海不同地区土壤中硒的形态分布及其有效性研究[J]. 土壤学报, 1998(3):398-403.
[30] Qu J G, Xu B X, Gong S C. Study on speciation distribution and availability of selenium in different soils of Shanghai[J]. Acta Pedologica Sinica, 1998(3):398-403.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[5] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[6] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[7] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[8] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[9] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[10] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[11] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
[12] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
[13] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[14] 包凤琴, 成杭新, 永胜, 杨宇亮, 马志超, 赵丽娟. 土默特左旗农田土壤环境质量综合评价及特色农业开发建议[J]. 物探与化探, 2023, 47(2): 487-495.
[15] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com