Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 68-75    DOI: 10.11720/wtyht.2021.1186
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例
刘俊峰1(), 程云涛1(), 邓志强1, 周芳春2, 曹创华3, 刘翔4, 曾美强2, 李杰5, 黄志彪2, 陈虎2
1.湖南省核工业地质调查院,湖南 长沙 410011
2.湖南省核工业地质局 311大队,湖南 长沙 410100
3.湖南省地质调查院,湖南 长沙 410011
4.湖南省生态环境事务中心,湖南 长沙 410014
5.湖南省地质院,湖南 长沙 410014
CSAMT and AMT data "splicing" processing: A case study of No.7 profile of the Renli niobium tantalum deposit in Hunan Province
LIU Jun-Feng1(), CHEN Yun-Tao1(), DENG Zhi-Qiang1, ZHOU Fang-Chun2, CAO Chuang-Hua3, LIU Xiang4, ZENG Mei-Qiang2, LI Jie5, HUANG Zhi-Biao2, CHEN Hu2
1. Hunan Nuclear Geology Institute,Changsha 410011,China
2. No.311 Geological Party of Hunan Nuclear Geology, Changsha 410100,China
3. Hunan Institute of Geological Survey, Changsha 410011,China
4. Hunan Eco-enviromnenal Affairs Center, Changsha 410014,China
5. Geological Bureau of Hunan Province, Changsha 410014,China
全文: PDF(3091 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

音频大地电磁测深(AMT)与可控源音频大地电磁测深(CSAMT)均为深部勘查常用方法。AMT方法采集频带较宽,但存在“死频带”,在“死频带”范围无法完全得到地质体响应。CSAMT信噪比高,但通常受发射功率的限制,收发距离一般放置不够远,容易过早进入“近区”。本文展示了将两种方法数据拼接组合的一种处理方式:首先在前人理论研究的基础上,利用CSAMT和AMT均匀半空间模型进行了正演计算,结果表明,CSAMT远区与AMT数据拼接具有可行性;选择湖南仁里铌钽矿床7号剖面的野外实测数据进行实验,将同测点位置的CSAMT远区数据和AMT同测点同模式数据相“拼接”,合成新AMT数据;最后进行反演,反演结果与钻探结果对应较好,表明该方法具有一定的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘俊峰
程云涛
邓志强
周芳春
曹创华
刘翔
曾美强
李杰
黄志彪
陈虎
关键词 音频大地电磁测深可控源音频大地电磁测深数据拼接幕阜山岩体    
Abstract

Generally, audio frequency magnetotelluric sounding (AMT) and controlled source audio frequency magnetotelluric sounding (CSAMT) are used for deep exploration. The AMT method has a relatively wide acquisition frequency band, but is affected by weak signals in certain frequency bands of the natural field, which is called "dead band". In the "dead band" range, the geological body response cannot be obtained completely. However, CSAMT has the characteristics of high signal-to-noise ratio due to the introduction of artificial source; therefore, due to the limitation of transmitting power, the distance between transmitting and receiving is generally not far enough, so it is easy to enter the "near area" prematurely. This paper proposes a processing method that combines the two methods of data splicing. Firstly, on the basis of previous theoretical research, the forward calculation is carried out by using CSAMT and AMT uniform half space model, and the results show that the combination of CSAMT and AMT data is feasible. Secondly, the field measured data of No. 7 geological section of the Renli niobium and tantalum deposit in Hunan Province are tested by using the CSAMT far area data and the AMT data at the same measuring point with the same mode to "splice". Finally, the new AMT data derived from synthesization are used. The results show that the inversion results and the drilling results correspond well, which proves that the method has good promotion significance.

Key wordsAMT    CSAMT    data processing    Mufu Mountain rock mass
收稿日期: 2020-04-21      修回日期: 2020-07-29      出版日期: 2021-02-20
ZTFLH:  P631  
基金资助:湖南省重点领域研发计划项目(2019SK2261);国家重点研发计划(2017YFC0602402);湖南省地勘基金项目(20170331);湖南省自然资源厅科研项目(2018-02);湖南省自然资源厅科研项目(2018-04);湖南省核工业地质局科技开发项目(KY2019-DDY-01)
通讯作者: 程云涛
作者简介: 刘俊峰(1986-),男,工程师,主要从事地质勘查与研究工作。Email:bgmaster@163.com
引用本文:   
刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
LIU Jun-Feng, CHEN Yun-Tao, DENG Zhi-Qiang, ZHOU Fang-Chun, CAO Chuang-Hua, LIU Xiang, ZENG Mei-Qiang, LI Jie, HUANG Zhi-Biao, CHEN Hu. CSAMT and AMT data "splicing" processing: A case study of No.7 profile of the Renli niobium tantalum deposit in Hunan Province. Geophysical and Geochemical Exploration, 2021, 45(1): 68-75.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1186      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/68
Fig.1  理论模拟计算曲线
Fig.2  矿区地质与测线布置[24]
1—第四系;2—冷家溪群片岩;3—细粒花岗闪长岩;4—细粒二云母二长花岗岩;5—中粒似斑状黑云母二长花岗岩;6—粗中粒片麻状黑云母二长花岗岩;7—新元古代中细粒黑云母斜长花岗岩;8—伟晶岩脉及其编号; 9—主要断裂及编号;10—物探测线及编号
Fig.3  2 360 m测点处CSAMT电阻率与相位曲线
Fig.4  2 360 m测点处AMT电阻率与相位曲线
Fig.5  2 360 m测点处数据拼接曲线
Fig.6  7线拼接数据反演结果
Fig.7  7线已有钻孔段地电剖面(a)和地质勘探剖面(b)[23]
1—冷家溪群片岩;2—花岗岩;3—伟晶岩脉及其编号;4—矿体及编号;5—钻孔及编号;6—槽探及编号
[1] Jones A C, Carcia X. Okak Bay AMT data-set case study: Lessons in dimensionality and scale[J]. Ueophysics, 2003,68(1):70-91.
[2] Ritter S S. High Ireyuency MT date understanding "dead band" between 1 and 4 kHz[C]// 22nd EM Induction Workshop.Weimar,Uermany, 2014.
[3] Müller A. A new method to compensate for bias in magnetotellurics[J]. Geophysical Journal International, 2000,142(1):257-269.
doi: 10.1046/j.1365-246x.2000.00152.x
[4] Gamble T, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979,44(1):53-68.
doi: 10.1190/1.1440923
[5] 杨生, 张少云. MT法中利用阻抗相位资料对畸变视电阻率曲线的校正[J]. 地质与勘探, 2001,37(6):42-45.
[5] Yang S, Zhang S Y. Correction of distorted apparent resistivity curve using impedance phase data in MT method[J]. Geology and exploration, 2001,37(6):42-45.
[6] 仇根根, 钟清, 刘君平, 等. 大地电磁测深视电阻率和相位曲线之间近似互算方法及程序实现[J]. 物探化探计算技术, 2012,34(4):402-405.
[6] Qiu G G, Zhong Q, Liu J P, et al. Approximate mutual calculation method and program realization between apparent resistivity and phase curve in magnetotelluric sounding[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012,34(4):402-405.
[7] Garcia X, Jones A G. Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform[J]. Geophysics, 2008,73(6):223-234.
[8] 李红领, 王光杰, 杨磊, 等. 基于蒙古东戈壁AMT数据的“死频带”分析[J]. 地球物理学进展, 2015,34(6):1188-1198.
[8] Li H L, Wang G J, Yang L, et al. Dead band analysis based on Mongolian east gobi AMT data[J]. Progress in Geophysics, 2015,34(6):1188-1198.
[9] 李凤哲, 李伟, 朱庆俊. 咸淡水共存区物探资料处理技术[J]. 物探与化探, 2011,35(5):692-695.
[9] Liu F Z, Li W, Zhu Q J. A discussion on data processing for geophysical exploration in the salt-fresh water concomitant area[J]. Geophysical and Geochemical Exploration, 2011,35(5):692-695.
[10] 谭捍东, 魏文博. 大地电磁标定曲线的畸变及校正[J]. 现代地质, 1998,12(4):603-606.
[10] Tan H D, Wei W B. Distortion of magnetotelluric calibration curve and its correction[J]. Geoscience, 1998,12(4):603-606.
[11] 汤井田, 周聪. AMT“死频带”数据频域特征与Rhoplus校正[C]// 第七届世界华人地质科学研讨会摘要集, 2013: 226-227.
[11] Tang J T, Zhou C. Frequency domain characteristics of AMT “dead band” data and rhoplus correction[C]// Abstracts of the 7th World Symposium on Chinese Geological Sciences, 2013: 226-227.
[12] 周聪, 汤井田, 任政勇, 等. 音频大地电磁法“死频带”畸变数据的Rhoplus校正[J]. 地球物理学报, 2015,58(12):4668-4660.
[12] Zhou C, Tang J T, Ren Z Y, et al. Rhoplus correction of “dead band” distortion data of audio frequency magnetotelluric method[J]. Chinese Journal of Geophysics, 2015,58(12):4668-4660.
[13] 谭洁. Rhoplus理论及AMT死频带校正[D]. 长沙:中南大学, 2014.
[13] Tan J. The theory of Rhoplus and correction of dead band data[D]. Changsha: Central South University, 2014.
[14] Garcia X, Jones A G. A new methodology for the acquisition and processing of audio-magnetotelluric (AMT) data in the AMT dead band[J]. Geophysics, 2005,70(5):119-126.
[15] 乔宝强, 程纪星, 刘祜. AMT野外最佳观测时间及人工源信号作用的探讨[J]. 铀矿地质, 2014,30(3):180-186.
[15] Qiao B Q, Cheng J X, Liu H. Discussion on the best acquisition season of AMT and man-made signals function in the field[J]. Uranium Geology, 2014,30(3):180-186.
[16] 王若, 王妙月. 可控源音频大地电磁数据的反演方法[J]. 地球物理学进展, 2003,18(2):197-202.
[16] Wang R, Wang M Y. Inversion method of controlled source audio-frequency magnetotelluric data[J]. Progress in Geophysics, 2003,18(2):197-202.
[17] 栾晓东, 底青云, 雷达. 基于牛顿迭代法和遗传算法的CSAMT近场校正[J]. 地球物理学报, 2018,61(10):4148-4159.
[17] Luan X D, Di Q Y, Lei D. Near-field correction of CSAMT data based on Newton iteration method and GA method[J]. Chinese Journal of Geophysics, 2018,61(10):4148-4159.
[18] 邓居智, 郑燕青, 陈辉, 等. 多种频率域电磁法在冷水坑矿集区的应用效果对比[J]. 地球物理学进展, 2016,31(6):166-176.
[18] Deng J Z, Zheng Y Q, Chen H, et al. Comparison of application effects of multiple frequency domain electromagnetic methods in Lengshuikeng ore concentration area[J]. Progress in Geophysics, 2016,31(6):166-176
[19] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[19] Tang J T, He J S. Methods and applications of CSAMT[M]. Changsha: Central South University Press, 2005.
[20] 汤井田, 周聪, 肖晓. 复杂介质条件下CSAMT 最小发收距的选择[J]. 有色金属学报, 2013,23(6):1681-1693.
[20] Tang J T, Zhou C, Xiao X. Selection of minimum transmit-receive distance of CSAMT on complicated media[J]. The Chinese Journal of Nonferrous Metals, 2013,23(6):1681-1693.
[21] 刘俊峰, 邓居智, 陈辉. 基于AMT数据构建地电模型的CSAMT最小收发距估算[J]. 地球物理学进展, 2016,31(6):2593-2597.
[21] Liu J F, Deng J Z, Chen H, et al. Calculation of minimum separation between receiver and transmitter of CSAMT based on 1D model structured by AMT date[J]. Progress in Geophysics, 2016,31(6):2593-2597.
[22] 曹创华, 邓专, 柳建新. 长株潭地区CSAMT法收发距探讨及实例分析[J]. 中国有色金属学报, 2017,27(2):345-355.
[22] Cao C H, Deng Z, Liu J X. Case study and analysis on distance between transmitter and receiver of CSAMT method in Changzhutan area,China[J]. The Chinese Journal of Nonferrous Metals, 2017,27(2):345-355.
[23] 刘翔, 周芳春, 黄志飚, 等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2018,38(2):161-166.
[23] Liu X, Zhou F C, Huang Z B, et al. Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang,Hunan province and its significances[J]. Geotectonica et Metallogenia, 2016,38(2):161-166.
[24] 周芳春, 李建康, 刘翔, 等. 湖南仁里铌钽矿床矿体地球化学特征及其地质意义[J]. 地质学报, 2019,93(6):1392-1404.
[24] Zhou F C, Li J K, Liu X, et al. Geochemical characteristics and genetic significance of ore bodies in Renli Nb-Ta deposit,Hunan province[J]. Acta Geologica Sinica, 2019,93(6):1392-1404.
[25] 束正祥, 张德贤, 鲁安怀, 等. 湘东北幕阜山岩体地质地球化学特征及其找矿指示意义[J]. 矿物学报, 2015,35(S1):240.
[25] Shu Z X, Zhang D X, Lu A H, et al. Geological and geochemical characteristics of Mufushan pluton in Northern Hunan province and its prospecting significance[J]. Acta mineralogica Sinica, 2015,35(S1):240.
[26] 周芳春, 刘翔, 李建康, 等. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J]. 大地构造与成矿学, 2019,43(1):77-166.
[26] Zhou F C, Liu X, Li J K, et al. Metallogenic characteristics and prospecting direction of Renli super large rare metal deposit in Hunan Province,China[J]. Geotectonica et Metallogenia, 2019,43(1):77-166.
[27] 刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019,38(4):771-791.
[27] Liu X, Zhou F C, Li P, et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 2019,38(4):771-791.
[28] 崔志强, 胥值礼, 孟庆敏. 高精度航空物探在幕阜山地区地质构造研究中的应用[J]. 华南地质与矿产, 2015,31(4):391-397.
[28] Cui Z Q, Xu Z L, Meng Q M. The application of high precision airborne geophysical research in Mufu moutian area[J]. Geology and Mineral Resources of South China, 2015,31(4):391-397.
[29] 崔志强, 胥值礼, 孟庆敏. 幕阜山及邻区地质构造及岩浆岩之航空地球物理特征[J]. 物探化探计算技术, 2016,38(2):161-166.
[29] Cui Z Q, Xu Z L, Meng Q M. Aerogeophyscial feature of the geological tectonic and magmatic rocks in the mufu-mountain area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016,38(2):161-166.
[30] 李鹏, 刘翔, 李建康, 等. 湘东北仁里—传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019,93(6):1374-1391.
[30] Li P, Liu X, Li J K, et al. Petrographic and geochemical characteristics of Renli-Chuanziyuan No.5 pegmatite,NE Hunan,and its metallogenic age[J]. Acta Geologica Sinica, 2019,93(6):1374-1391.
[31] 李鹏, 李建康, 裴荣富, 等. 幕阜山复式花岗岩体多期次演化与白至纪稀有金属成矿高峰:年代学依据[J]. 地球科学, 2017,42(10):1684-1696.
[31] Li P, Li J K, Pei R F, et al. Multistage magmatic evolution and cretaceous peak metallogenic epochs of Mufushan composite granite Mass:Constrains from geochronological evidence[J]. Earth Science, 2017,42(10):1684-1696.
[32] 周芳春, 黄志毗, 刘翔, 等. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 大地构造与成矿学, 2020,44(3):476-485.
[32] Zhou F C, Huang Z B, Liu X, et al. Re-Os dating of molybdenite from the Renli Nb-Ta deposit,Hunan province,and its geological significance[J]. Geotectonica and Metallogenia, 2020,44(3):476-485.
[33] 李乐广, 王连训, 田洋, 等. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义[J]. 地球科学, 2019,44(7):611-618.
[33] Li L G, Wang L X, Tian Y, et al. Petrogenesis and rare-metal mineralization of the Mufushan granitic pegmatite,South China: Insights from in situ mineral analysis[J]. Earth Science, 2019,44(7):611-618.
[34] 湖南省地质调查院. 湖南省区域地质志[M]. 北京: 地质出版社, 2012: 850-852.
[34] Hunan Institute of Geological Survey. Regional geological records of Hunan Province [M]. Beijing: Geological Publishing House, 2012: 850-852.
[35] 刘丽君, 付小方, 王登红, 等. 甲基卡式稀有金属矿床的地质特征与成矿规律[J]. 地质与矿产, 2015,34(6):1188-1198.
[35] Liu L J, Fu X F, Wang D H, et al. Geological characteristics and metallogeny of Jiajika-tyle rare metal deposits[J]. Mineral Deposits, 2015,34(6):1188-1198.
[36] 杨荣, 郝雪峰, 王登红, 等. 四川甲基卡锂矿田伟晶岩脉的地球物理探测效果——以新三号脉(X03)为例[J]. 矿床地质, 2020,39(1):111-125.
[36] Yang R, Hao X F, Wang D H, et al. Effect of geophysical exploration on the pegmatite vein in Jiajika lithium orefield,Sichuan province: A case study of X03 vein[J]. Mineral Deposits, 2020,39(1):111-125.
[1] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[2] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[3] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[4] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[5] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[6] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[7] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[8] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
[9] 徐志敏, 辛会翠, 谭新平, 徐张建. 强电磁干扰区大地电磁远参考技术试验效果分析[J]. 物探与化探, 2018, 42(3): 560-568.
[10] 方慧, 裴发根, 何梅兴, 白大为, 胡祥云, 钟清, 杜炳锐, 张小博, 卢景奇. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074.
[11] 裴发根, 何梅兴, 仇根根, 杜炳锐, 白大为. 青藏高原冻土区AMT探测天然气水合物采集试验[J]. 物探与化探, 2017, 41(6): 1113-1120.
[12] 裴发根, 方慧, 仇根根, 杜炳锐, 何梅兴, 张鹏辉, 李振宇. 青海哈拉湖东南缘多年冻土厚度及其影响因素研究——基于音频大地电磁探测[J]. 物探与化探, 2017, 41(6): 1175-1182.
[13] 刘畅往, 裴发根, 仇根根, 张鹏辉. 东北漠河盆地北部冻土分布特征[J]. 物探与化探, 2017, 41(6): 1204-1214.
[14] 裴发根, 方慧, 仇根根, 何梅兴, 彭炎, 吕琴音. 青海木里冻土区AMT探测天然气水合物正演模拟研究[J]. 物探与化探, 2017, 41(6): 1237-1247.
[15] 刘畅往, 何梅兴, 杜炳锐. 东北漠河盆地北部电性特征及其地质意义[J]. 物探与化探, 2017, 41(6): 1195-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com