Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 392-401    DOI: 10.11720/wtyht.2022.1135
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用
肖张波(), 雷永昌, 于骏清, 吴琼玲, 杨超群
中海石油(中国)有限公司 深圳分公司,广东 深圳 518054
Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag
XIAO Zhang-Bo(), LEI Yong-Chang, YU Jun-Qing, WU Qiong-Ling, YANG Chao-Qun
Shenzhen Branch of CNOOC China Limited,Shenzhen 518054,China
全文: PDF(8950 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

低勘探程度区作为后备储量增长点越来越受到重视,但面临着许多地球物理难题。陆丰22洼勘探程度较低,钻井数量少,地质资料缺乏,依靠传统测井数据或叠加速度构建反演低频模型难度大、精度低,另外海洋地震资料受鬼波影响,压制了低频和高频波场成分,减小了地震资料的频宽,降低反演结果的保真度和精度。基于此,本文首先通过宽频处理技术获取频带信息更加丰富的地震资料,然后利用高精度层析速度场与有色反演相结合,构建无井区低频模型,在此基础上应用扩展弹性阻抗反演预测烃源岩及储层分布。实际应用成功预测了优质烃源岩的展布及有利储层发育带,预探井钻遇厚层中深湖相烃源岩并获得油气发现,拉开了新区勘探的序幕。研究表明,宽频资料有效提高了中深层地震反演的可靠性,低频信息的应用改善了岩性识别能力,为低勘探区岩性预测提供了有效的技术。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖张波
雷永昌
于骏清
吴琼玲
杨超群
关键词 古近系宽频地震低频模型扩展弹性阻抗反演    
Abstract

Areas at a low exploration level have drawn increasing attention as future contributors to reserves growth.However,they are facing many geophysical challenges.Lufeng 22 subsag is such an area due to few drilled wells and insufficient geological data.In this case,it is difficult to build an accurate low-frequency inversion model using traditional logging data or stacking velocity.Moreover,affected by ghost reflections,low- and high-frequency waves in marine seismic data are suppressed.As a result,the bandwidth of seismic data is decreased,thus reducing the authenticity and accuracy of inversion results.To address these problems,this paper firstly obtained seismic data with broader bandwidth using broadband processing technology.Then,it built a low-frequency model for areas without well control using colored inversion combined with a high-precision velocity field obtained through tomographic imaging.Based on this,this paper predicted the distribution of source rocks and reservoirs using the extended elastic impedance inversion method.This technology was applied to the Lufeng 22 subsag,enabling the successful prediction of the distribution of high-quality source rocks and favorable reservoir areas.Thick layers of middle-deep lacustrine-facies source rocks as well as oil and gas have been discovered during the drilling of the first exploration well in the subsag,which started the exploration in the new area.This study indicates that this technology effectively improves the reliability of seismic inversion of middle-deep layers using broadband data and can well identify lithology utilizing low-frequency information,thus serving as an effective technology for the lithology prediction of areas at a low exploration level.

Key wordsPaleogene    broadband seismic    low-frequency model    extended elastic impendence inversion
收稿日期: 2021-03-12      修回日期: 2022-01-14      出版日期: 2022-04-20
ZTFLH:  P631.4  
基金资助:中海油“十三五”科技重点项目“南海东部油田上产2000 万吨关键技术研究”(CNOOC-KJ135ZDXM37SZ)
作者简介: 肖张波(1986-),男,硕士,工程师,中国石油大学(华东),主要从事构造解释及地球物理岩性预测研究工作。Email: xiaozhb@cnooc.com.cn
引用本文:   
肖张波, 雷永昌, 于骏清, 吴琼玲, 杨超群. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2): 392-401.
XIAO Zhang-Bo, LEI Yong-Chang, YU Jun-Qing, WU Qiong-Ling, YANG Chao-Qun. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag. Geophysical and Geochemical Exploration, 2022, 46(2): 392-401.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1135      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/392
Fig.1  宽频地震无井反演技术流程
Fig.2  常规处理地震资料(a)与宽频处理地震资料(b)对比
Fig.3  常规处理资料与宽频处理资料频谱分析对比
Fig.4  常规处理资料(a)与宽频处理资料(b)反演剖面对比
Fig.5  低频约束模型构建流程
a—初始低频约束模型;b—相对低频约束模型;c—最终低频约束模型
Fig.6  不同角度EEI与TOC,孔隙度相关性分析
Fig.7  不同旋转角度EEI曲线与TOC曲线,孔隙度曲线的对比
Fig.8  扩展弹性阻抗EEI与TOC(a)、孔隙度(b)交会关系
钻井编号 深度/m TOC/% Ro/% S1+S2/(mg·g-1) Tmax/℃ HI/(mg·g-1) 母质类型 烃源岩质量
LF-B-1 3145~3227 1.93~7.75 7.51~28.82 434~440 302~606 1-Ⅱ2 好—很好
LF-A-1 3651~3747 2.96~3.70 0.59~0.71 2.96~3.90 431~436 306~359 Ⅰ-Ⅱ1 好—很好
LF-G-1 3798~3882 1.75~2.33 0.72~0.77 7.88~11.61 460~471 462~569 Tmax过高
LF-T-1 3417~3576 1.70~2.45 0.58~0.66 7.40~20.60 437~441 408~557 Ⅰ-Ⅱ1 中—好
Table 1  陆丰凹陷文四段烃源岩地球化学参数特征
Fig.9  扩展弹性阻抗EEI(25°)反演剖面
Fig.10  LF-H井地球化学录井
Fig.11  文三段+文四段烃源岩分布
a—文三段+文四段烃源岩厚度;b—文三段+文四段烃源岩TOC含量分布
Fig.12  扩展弹性阻抗EEI(40°)反演剖面
Fig.13  砂体平面分布特征
a—砂体均方根属性;b—砂体孔隙度平面分布
[1] 叶云飞, 刘春成, 刘志斌, 等. 海上宽频地震反演方法及其在南海深水区的应用[J]. 中国海上油气, 2018, 30(2):65-70.
[1] Ye Y F, Liu C C, Liu Z B, et al. Analysis of marine broadband seismic data inversion and application in deep water of South China Sea[J]. China Offshore Oil and Gas, 2018, 30(2):65-70.
[2] 李庆忠. 论地震约束反演的策略[J]. 石油地球物理勘探, 1998, 33(4):423-438.
[2] Li Q Z. On strategy of seismic restricted inversion[J]. Oil Geophysical Prospecting, 1998, 33(4):423-438.
[3] 乔凤远, 覃素华, 张宁, 等. 地震低频信息在反演中的作用[J]. 石油地球物理勘探, 2018, 53(S2):266-271.
[3] Qiao F Y, Qin S H, Zhang N, et al. Low-frequency seismic information applied in inversion[J]. Oil Geophysical Prospecting, 2018, 53(S2):266-271.
[4] 张彬彬, 张军华, 吴永亭. 地震数据低频信号保护与拓频方法研究[J]. 地球物理学进展, 2019, 34(3):1139-1144.
[4] Zhang B B, Zhang J H, Wu Y T, et al. Research on protection and extension for seismic low frequencies[J]. Progress in Geophysics, 2019, 34(3):1139-1144.
[5] 叶云飞, 刘春成. 深水宽频地震资料反演及地震属性分析[J]. 海洋工程装备与技术, 2019, 6(S1):268-271.
[5] Ye Y F, Liu C C. Advantage analysis and application of broadband seismic data in deep-water[J]. Ocean Engineering Equipment and Technology, 2019, 6(s1):268-271.
[6] 王艳冬, 王小六, 桑淑云, 等. 渤海海域水平拖缆数据宽频处理关键技术[J]. 石油地球物理勘探, 2020, 55(1):10-16.
[6] Wang Y D, Wang X L, Sang S Y, et al. Key techniques for broadband processing of plane streamer data in Bohai Sea[J]. Oil Geophysical Prospecting, 2020, 55(1):10-16.
[7] Vitale G, Greco L, D’Alessandro A, et al. Bandwidth extension of a 4.5 Hz geophone for seismic monitoring purpose[C]// IEEE International Conference on Environmental Engineering, 2018:1-5.
[8] 王华忠, 郭颂, 周阳. “两宽一高”地震数据下的宽带波阻抗建模技术[J]. 石油物探, 2019, 58(1):1-8.
[8] Wang H Z, Guo S, Zhuo Y. Broadband acoustic impedance model building for broadband, wide-azimuth, and high-density seismic data[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):1-8.
[9] 马劲风, 王学军, 谢言光, 等. 波阻抗反演中低频分量构建的经验与技巧[J]. 石油物探, 2000, 39(1):27-34.
[9] Ma J F, Wang X J, Xie Y G, et al. Experience and skill of constructing low frequency components in impedance inversion[J]. Geophysical Prospecting for Petroleum, 2000, 39(1):27-34.
[10] 叶云飞, 崔维, 张益明, 等. 低频模型对波阻抗反演结果定量解释的影响[J]. 中国海上油气, 2014, 26(6):32-36.
[10] Ye Y F, Cui W, Zhang Y M, et al. Impacts of low-frequency models on the quantitative interpretation of acoustic impedance inversion[J]. China Offshore Oil and Gas, 2014, 26(6):32-36.
[11] 文晓涛, 杨吉鑫, 李雷豪, 等. 低频稀疏双约束宽频带地震阻抗反演[J]. 天然气工业, 2019, 39(5):45-52.
[11] Wen X T, Yang J X, Li L H, et al. Low-frequency sparse double-constrained broadband seismic impedance inversion[J]. Natural Gas Industry, 2019, 39(5):45-52.
[12] Cambois G. AVO inversion and elastic impedance[J]. SEG Technical Program Expanded Abstracts, 1949, 19(1):2484.
[13] 刘道理, 李坤, 杨登锋, 等. 基于频变AVO反演的深层储层含气性识别方法[J]. 天然气工业, 2020, 40(1):48-54.
[13] Liu D L, Li K, Yang D F, et al. A gas-bearing property identification method for deep reservoirs based on frequency-dependent AVO inversion[J]. Natural Gas Industry, 2020, 40(1):48-54.
[14] 李坤, 印兴耀, 宗兆云, 等. 频变黏弹性流体因子叠前地震F-AVA反演方法[J]. 中国石油大学学报:自然科学版, 2019, 43(1):23-32.
[14] Li K, Yin X Y, Zong Z Y, et al. Estimating frequency-dependent viscoelastic fluid indicator from pre-stack F-AVA inversion[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(1):23-32.
[15] Connolly P. Elastic impedance[J]. Leading Edge, 1999, 18(4):438-438.
doi: 10.1190/1.1438307
[16] 宗兆云, 孙乾浩, 陈维涛, 等. 惠西南地区储层含油气性叠前地震固液解耦识别[J]. 中国海上油气, 2020, 32(4):56-64.
[16] Zong Z Y, Sun Q H, Chen W T, et al. Pre-stack seismic solid-liquid decoupling identification for oil-gas reservoirs in southwestern Huizhou area[J]. China Offshore Oil and Gas, 2020, 32(4):56-64.
[17] Whitcombe D N. Elastic impedance normalization[J]. Geophysics, 2012, 67(1):60-62.
doi: 10.1190/1.1451331
[18] Whitcombe D N, Connolly P A, Reagan R L, et al. Extended elastic impedance forfluid and lithology prediction[J]. Geophysics, 2002, 67(1):63-67.
doi: 10.1190/1.1451337
[19] 秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018, 33(5):2148-2152.
[19] Qin D H, Li D Y, Cai J Y, et al. Application of extended elastic impedance for physical property prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5):2148-2152.
[20] 时磊, 刘俊州, 董宁, 等. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2):346-351.
[20] Shi L, Liu J Z, Dong N, et al. Extended elastic impedance inversion technology and its application to the tight and thin sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2015, 39(2):346-351.
[21] 刘晓晶, 印兴耀, 吴国忱, 等. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016, 59(1):277-286.
[21] Liu X J, Yin X Y, Wu G C, et al. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics, 2016, 59(1):277-286.
[22] 宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究[J]. 石油地球物理勘探, 2011, 46(4):598-604,609.
[22] Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting[J]. Oil Geophysical Prospecting, 2011, 46(4):598-604,609.
[23] 朱筱敏, 葛家旺, 吴陈冰洁, 等. 珠江口盆地陆丰凹陷深层砂岩储层特征及主控因素[J]. 石油学报, 2019, 40(s1):69-80.
[23] Zhu X M, Ge J W, Wu C B J, et al. Reservoir characteristics and main controlling factors of deep sandstone in Lufeng sag,Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(s1):69-80.
[1] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[2] 时磊, 刘俊州, 董宁, 王箭波, 夏红敏, 王震宇. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com