Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 474-481    DOI: 10.11720/wtyht.2022.2411
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于Curvelet变换的线杆共振干扰去除方法
谢兴隆(), 马雪梅, 龙慧, 明圆圆, 孙晟()
中国地质调查局 水文地质环境地质调查中心,河北 保定 071051
Curvelet transform-based denoising of resonance interference induced by electrical poles in seismic exploration
XIE Xing-Long(), MA Xue-Mei, LONG Hui, MING Yuan-Yuan, SUN Sheng()
Center for Hydrogeology and Environmental Geology Survey,CGS,Baoding 071051,China
全文: PDF(5951 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

线杆共振干扰是中浅层地震勘探常见干扰之一,尤其对浅部数据影响较大,由于石油、煤田勘探涉及此类干扰较少,缺乏相关研究内容。Curvelet变换可以获得图像平滑区域和边缘部分的稀疏表达,也能满足时变信号处理的要求,在地震资料处理中取得了较好的效果。本文根据线杆共振干扰在地震数据中表现的特点,提出了一种基于Curvelet变换的线杆共振干扰去除方法,首先通过分析线杆共振干扰与有效信息在Curvelet域的特征差异,借助Curvelet变换的多尺度、多方向特性实现波场分离,然后根据本文设计的非线性阈值函数对干扰系数进一步衰减。通过实际数据的应用分析,发现本文提出的方法可以有效地去除线杆共振干扰,同时可以较好地保护有效信号,去噪后资料的信噪比及分辨率均有不同程度的提高,从而证明了该方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢兴隆
马雪梅
龙慧
明圆圆
孙晟
关键词 Curvelet变换地震勘探线杆共振干扰去噪非线性阈值    
Abstract

The resonance interference induced by electrical poles is a common type of noise in middle-shallow seismic exploration,especially for shallow data.However,relevant studies are scarce since it is rarely involved in petroleum and coalfield exploration.The Curvelet transform allows for a sparse representation of smooth regions and edges in images and can meet the requirements of time-varying signal processing,thus achieving good effects in the processing of seismic data.Based on the characteristics of the electrical pole-induced resonance interference in seismic data,this paper proposes a new method that utilizes the Curvelet transform to remove the resonance interference in original data and the steps are as follows.First,analyze the differences between the characteristics of the resonance interference induced by electrical poles and effective information in the Curvelet domain.Based on this,conduct wavefield separation according to the multi-scale and multi-direction characteristics of the Curvelet transform.Then,further attenuate the interference factors using the nonlinear threshold function designed in this paper.According to the application and analysis of actual data,this method can effectively remove the resonance interference induced by electrical poles while properly protecting effective signals and can significantly improve the signal-to-noise ratio and resolution of the denoised data.Therefore,the method proposed in this paper is effective.

Key wordsCurvelet transform    seismic exploration    pole resonance interference    denoising method    nonlinear thresholding
收稿日期: 2020-12-24      修回日期: 2021-09-15      出版日期: 2022-04-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目(2020YFE0201300);中国地质调查局地质调查项目(DD20189630)
通讯作者: 孙晟
作者简介: 谢兴隆(1989-),男,硕士,目前在中国地质调查局水文地质环境地质调查中心物探室从事地球物理勘探与方法研究工作。Email: xxl0306@126.com
引用本文:   
谢兴隆, 马雪梅, 龙慧, 明圆圆, 孙晟. 基于Curvelet变换的线杆共振干扰去除方法[J]. 物探与化探, 2022, 46(2): 474-481.
XIE Xing-Long, MA Xue-Mei, LONG Hui, MING Yuan-Yuan, SUN Sheng. Curvelet transform-based denoising of resonance interference induced by electrical poles in seismic exploration. Geophysical and Geochemical Exploration, 2022, 46(2): 474-481.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2411      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/474
Fig.1  线杆照片(a)及线杆共振干扰形成示意(b)
Fig.2  正演模型(a)及正演的单炮记录(b)
Fig.3  线杆共振干扰在实际地震记录中的表现特点
a—共振干扰较小;b—共振干扰较大
Fig.4  原始数据(a)及其Curvelet系数分布(b)
Fig.5  原始记录及各尺度分解结果
a—原始记录;b~f—分别对应1~5尺度的分解结果
Fig.6  第4尺度含干扰成分的方向分量
Fig.7  原始数据最终分离结果
a—含线杆共振干扰数据;b—不含线杆共振干扰数据
Fig.8  最终去除的线杆共振干扰数据
Fig.9  原始数据(a)与处理结果对比(b)
Fig.10  频谱对比分析
[1] 张军华, 吕宁, 田连玉, 等. 地震资料去噪方法、技术综合评述[J]. 地球物理学进展, 2005, 20(4):1083-1091.
[1] Zhang J H, Lyu N, Tian L Y, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics, 2005, 20(4):1083-1091.
[2] 杨会. 基于Curvelet变换的地震资料噪声压制研究[D]. 南昌: 东华理工大学, 2018.
[2] Yang H. Research on noise suppression of seismic data based on curvelet transform[D]. Nanchang: East China University of Technology, 2018.
[3] Deighan A J, Watts D R. Ground-roll suppressing using the wavelet transform[J]. Geophysics, 1997, 62(6): 1896-1903.
doi: 10.1190/1.1444290
[4] 高静怀, 毛剑, 满蔚仕, 等. 叠前地震资料噪声衰减的小波域方法研究[J]. 地球物理学报, 2006, 49(4):1155-1163.
[4] Gao J H, Mao J, Man W S, et al. On the denoising method of prestack seismic data in wavelet domain[J]. Chinese Journal of Geophysics, 2006, 49(4):1155-1163.
doi: 10.1002/cjg2.940
[5] Mallat S G. A theory for multiresolution signal decomposition:The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
doi: 10.1109/34.192463
[6] Candès E J, Donoho D L. Curvelets—A surprisingly effective nonadaptive representation for objects with edges[J]. Computer Science, 2000:1-10.
[7] Candès E, Demanet L, Donoho D L, et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Communications on Pure & Applied Mathematics, 2010, 57(2):219-266.
[8] Candès E J, Donoho D L. Continuous curvelet transform:I.Resolution of the wavefront set[J]. Applied & Computational Harmonic Analysis, 2005, 19(2):162-197.
[9] Candès E J, Donoho D L, et al. Fast discrete Curvelet transforms[J]. Multiscale Modeling & Simulation, 2006, 5(3):861-899.
[10] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4):750-756.
[10] Xu W, Zhang H, Zhang L Y. A study of seismic data reconstruction based on complex-valued curvelet transform[J]. Geophysical and Geochemical Exploration, 2016, 40(4):750-756.
[11] 温睿, 刘国昌, 冉扬. 压缩感知地震数据重建中的三个关键因素分析[J]. 石油地球物理勘探, 2018, 53(4):682-693.
[11] Wen R, Liu G C, Ran Y. Three key factors in seismic data reconstruction based on compressive sensing[J]. Oil Geophysical Prospecting, 2018, 53(4):682-693.
[12] 王汉闯, 陶春辉, 陈生昌, 等. 基于稀疏约束的地震数据高效采集方法理论研究[J]. 地球物理学报, 2016, 59(11):4246-4265.
[12] Wang H C, Tao C H, Chen S C, et al. Study on highly efficient seismic data acquisition method and theory based on sparsity constraint[J]. Chinese Journal of Geophysics, 2016, 59(11):4246-4265.
[13] 白兰淑, 刘伊克, 卢回忆, 等. 基于压缩感知的Curvelet域联合迭代地震数据重建[J]. 地球物理学报, 2014, 57(9):2937-2945.
[13] Bai L S, Liu Y K, Lu H Y, et al. Curvelet-domain joint iterative seismic data reconstruction based on compressed sensing[J]. Chinese Journal of Geophysics, 2014, 57(9):2937-2945.
[14] 薛永安, 王勇, 李红彩, 等. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1):81-86.
[14] Xue Y A, Wang Y, Li H C, et al. An improved random attenuation method based on curvelet transform and total variation[J]. Geophysical and Geochemical Exploration, 2014, 38(1):81-86.
[15] 孙成禹, 刁俊才, 李文静. 基于曲波噪声估计的三维块匹配地震资料去噪[J]. 石油地球物理勘探, 2019, 54(6):1188-1194.
[15] Sun C Y, Diao J C, Li W J. 3D Block matching seismic data denoising based on Curvelet noise estimation[J]. Oil Geophysical Prospecting, 2019, 54(6):1188-1194.
[16] 张华, 刁塑, 温建亮, 等. 应用二维非均匀曲波变换压制地震随机噪声[J]. 石油地球物理勘探, 2019, 54(1):16-23.
[16] Zhang H, Diao S, Wen J L, et al. A random noise suppression with 2D non-uniform curvelet transform[J]. Oil Geophysical Prospecting, 2019, 54(1):16-23.
[17] 郑静静, 印兴耀, 张广智, 等. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4):325-335.
[17] Zheng J J, Yin X Y, Zhang G Z, et al. The surface wave suppression using the second generation curvelet tracsform[J]. Applied Geophysics, 2010, 7(4):325-335.
doi: 10.1007/s11770-010-0257-x
[18] 李继伟, 刘晓兵, 周俊骅, 等. 基于能量比的Curvelet阈值迭代面波压制[J]. 石油地球物理勘探, 2019, 54(5):997-1004.
[18] Li J W, Liu X B, Zhou J H, et al. A Curvelet threshold iteration method based on energy ratio for surface-wave suppression[J]. Oil Geophysical Prospecting, 2019, 54(5):997-1004.
[19] 王常波, 田坤, 刘立彬, 等. 基于地震子波支撑和Curvelet域稀疏约束的面波衰减方法[J]. 地球物理学进展, 2020, 35(1):181-187.
[19] Wang C B, Tian K, Liu L B, et al. Ground-roll attenuation method based on the seismic wavelet supported and sparse constraint in Curvelet domain[J]. Progress in Geophysics, 2020, 35(1):181-187.
[20] Donoho D L, Johnstone I M. Ideal spacial adaptation by wavelet shrinkage[J]. Biometrica, 1994, 81(3):425-455.
doi: 10.1093/biomet/81.3.425
[1] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[2] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[3] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[4] 黄泽佼, 徐子东, 罗晗, 黄远生. 希尔伯特—黄变换(HHT)在EH-4数据去噪处理中的应用[J]. 物探与化探, 2022, 46(5): 1232-1240.
[5] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[6] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[7] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[8] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
[9] 谢兴隆, 马雪梅, 龙慧, 李秋辰, 郭淑君, 程正璞. 基于可控震源的中浅部地震勘探参数选择[J]. 物探与化探, 2021, 45(4): 1004-1013.
[10] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3): 686-691.
[11] 张杨, 王君恒, 曹炼鹏, 冯裕华, 朱江皇, 付强. 曲波变换在位场信号提取中的应用研究[J]. 物探与化探, 2021, 45(1): 84-94.
[12] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[13] 李江, 智敏, 朱书阶. 岩浆岩地震波阻抗反演与厚度预测[J]. 物探与化探, 2020, 44(5): 1233-1238.
[14] 赵文举, 赵荔, 杨战军, 陶德强. 插值切割位场分离方法改进及其在资料处理中的应用[J]. 物探与化探, 2020, 44(4): 886-893.
[15] 徐磊, 汪思源, 张建清, 李文忠, 李鹏. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3): 635-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com