Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 84-94    DOI: 10.11720/wtyht.2021.1405
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
曲波变换在位场信号提取中的应用研究
张杨1(), 王君恒1(), 曹炼鹏2, 冯裕华2, 朱江皇2, 付强2
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.深圳市地质环境监测中心,广东 深圳 518034
A study of the application of Curvelet transform to potential field signal extraction
ZHANG Yang1(), WANG Jun-Heng1(), CAO Lian-Peng2, FENG Yu-Hua2, ZHU Jiang-Huang2, FU Qiang2
1. School of Geophysics and Information Technology,China University of Geosciences(Beijing), Beijing 100083,China
2. Center for Environmental Monitoring of Geology,Shenzhen 518034,China
全文: PDF(6438 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了重磁数据中有效信号的分离与提取,本文研究了最近十几年发展起来的一种方法:曲波变换方法(Curvelet transform method)。从曲波变换的基本原理入手,通过重力位场理论模型数据分析了曲波变换的多尺度分解重构能力,并且利用加噪理论模型数据分析了曲波变换的阈值去噪能力,此外,还使用曲波变换对南岭东部地区布格重力异常资料进行了有效信号提取。结果验证了该方法可同时适用于位场数据的分解和去噪处理研究,为重磁数据多尺度分析处理提供参考,也为实际资料数据提供一定的指示作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张杨
王君恒
曹炼鹏
冯裕华
朱江皇
付强
关键词 位场数据曲波变换有效信号提取多尺度分解阈值去噪    
Abstract

In order to separate and extract the effective signals from gravity and magnetic data, the authors studied a method developed in the past ten years—Curvelet transform method. Starting with the basic principles of the Curvelet transform, the authors analyzed the multi-scale decomposition and reconstruction ability of the Curvelet transform through the theoretical model data of the gravity potential field, and analyzed the threshold denoising ability of the Curvelet transform by the noise-added theoretical model data. In addition, the Curvelet transform was used to extract effective signals from the Bouguer gravity anomaly data in the eastern part of Nanling. The results verify that the method can be applied to both the decomposition and denoising processing of potential field data. The results provide a reference for the multi-scale analysis and processing of gravity and magnetic data as well as a certain indication for actual data.

Key wordspotential field data    Curvelet transform    effective signal extraction    multi-scale decomposition    threshold denoising
收稿日期: 2020-08-14      修回日期: 2020-11-19      出版日期: 2021-02-20
ZTFLH:  P631  
基金资助:自然科学基金项目“面向海域磁测日变改正的地磁场变化试验与分析预测研究”(41574132)
通讯作者: 王君恒
作者简介: 张杨 (1995-),男,硕士研究生,主要从事地球物理方法技术研究工作。Email:405350764@qq.com
引用本文:   
张杨, 王君恒, 曹炼鹏, 冯裕华, 朱江皇, 付强. 曲波变换在位场信号提取中的应用研究[J]. 物探与化探, 2021, 45(1): 84-94.
ZHANG Yang, WANG Jun-Heng, CAO Lian-Peng, FENG Yu-Hua, ZHU Jiang-Huang, FU Qiang. A study of the application of Curvelet transform to potential field signal extraction. Geophysical and Geochemical Exploration, 2021, 45(1): 84-94.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1405      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/84
层次 尺度系数 方向参数个数 矩阵形式 矩阵形式 矩阵形式 矩阵形式 矩阵形式
粗糙层 C{1} 1 21×21
细节层 C{2} 16 18×22 16×22 22×18 22×16
C{3} 32 34×22 32×22 22×34 22×32
C{4} 32 67×44 64×43 64×44 44×64
C{5} 64 131×44 128×43 128×44 44×128
精细层 C{6} 1 512×512
Table 1  512×512数据的Curvelet系数结构
Fig.1  直立六面体组合重力异常
Fig.2  Curvelet变换分解后的系数重构重力异常
Fig.3  Curvelet变换分解后的重构重力异常
模型体
序号
直立六面体角点坐标/km 剩余密度
ρ/(kg·m-3)
x1 x2 y1 y2 z1 z2
A1 6 8 12 13 0.4 0.8 250
A2 13 14 7 9 0.5 0.9 300
A3 5 7 5 6.5 0.5 1 500
B1 5 9 11 19 1.5 3 250
B2 10 20 5 12 1.5 3 -100
Table 2  直立六面体场源参数统计
Fig.4  加噪数据曲波变换重构
Fig.5  加噪数据Curvelet变换阈值去噪
(加10%幅值随机噪声,sigma=0.8)
Fig.6  加噪数据Curvelet变换阈值去噪
(加5%幅值随机噪声,sigma=0.45)
Fig.7  加噪数据Curvelet变换阈值去噪
(加1%幅值随机噪声,sigma=0.15)
Fig.8  南岭东部EGM2008布格重力异常
Fig.9  研究区地形
Fig.10  Curvelet变换重构重力异常
Fig.11  南岭东部地质简图
Fig.12  南岭东部地质简图(a)与重力异常(b)对比
[1] 熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009,24(1):113-117.
[1] Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009,24(1):113-117.
[2] 柳建新, 孙欢乐, 陈波, 等. 重磁方法在国内外金属矿中的研究进展[J]. 地球物理学进展, 2016,31(2):713-722.
[2] Liu J X, Sun H L, Chen B, et al. Review of the gravity and magnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 2016,31(2):713-722.
[3] 邢怡. 重磁异常分离方法技术研究[D]. 北京:中国地质大学(北京), 2008.
[3] Xing Y. Research in the method of separating anomalous gravity and magnetic data[D]. Beijing:China University of Geosciences(Beijing), 2008.
[4] 刘金兰. 重磁位场新技术与山西断陷盆地构造识别划分研究[D]. 西安:长安大学, 2008.
[4] Liu J L. Development new technologies for potential field processing and research on the tectonic recognition division of shanxi fault basin[D]. Xi'an:Chang'an University, 2008.
[5] Candès E, Donoho D. Curvelets:A surprisingly effective nonadaptive representation of objects with edges[M]. TN: Vanderbilt University Press, 1999.
[6] Candès E, Donoho D. New tight frames of curvelets and optimal representations of objects with C2 singularities[R]. Stanford:Technical Report, 2002.
[7] Candès E, Demanet L. Curvelets and Fourier integral operators[R]. To appear in Comptes-Rendus del’Academie des Sciences,Paris,Serie I, 2002.
[8] Candès E, Guo F. New multiscale transforms,minimum total variation synjournal: Applications to edge-preserving image reconstruction[J]. Signal Processing, 2002,82:1519-1543.
doi: 10.1016/S0165-1684(02)00300-6
[9] Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. SI-AM Multiscale Modeling and Simulation, 2006,5:861-899.
[10] Herrmann F J, Wang D L, Hennenfent G. Multiple prediction from incomplete data with the focused curvelet transform[C]// Society of Exploration Geophysicists,Expanded Abstracts, 2007: 2505-2509.
[11] Ramesh N, Domimique G, Mohamed T, et al. Coherent and random noise attenuation using the curvelet transform[J]. The Leading Edge, 2008,27(2):240-248.
doi: 10.1190/1.2840373
[12] Huub D, Maarten V. Wave-character preserving pre-stack map migration using curvelets[C]// Society of Exploration Geophysicists,Expanded Abstracts, 2004: 961-964.
[13] 单昊. 基于几何小波的多目标图像分割与地震去噪[D]. 北京:清华大学, 2010.
[13] Shan H. Geometric wavelet based image segmentation with multiple objects and seismic denoising[D]. Beijing:Tsinghua University, 2010.
[14] 邱菊. 基于小波变换和二代曲波变换的乳腺钼靶X片图像增强[D]. 长春:吉林大学, 2009.
[14] Qui J. The enhancement of molybdenum target X-ray image based on wavelet transform and the second generation Curvelet transform[D]. Changchun:Jilin University, 2009.
[15] 朱为, 李国辉, 涂丹. 一种基于第2代曲波变换的尺度相关图像去噪方法[J]. 中国图象图形学报, 2008,13(12):2281-2285.
doi: 10.11834/jig.20081205
[15] Zhu W, Li G H, Tu D. A scale correlation image denoising method based on the second generation Curvelet transform[J]. Journal of Image and Graphics, 2008,13(12):2281-2285.
doi: 10.11834/jig.20081205
[16] 杨俊, 李静和, 孟淑君, 等. 小波与曲波变换探地雷达数据去噪对比分析[J]. 地球物理学进展, 2019,34(5):2097-2105.
[16] Yang J, Li J H, Meng S J, et al. Comparative analysis of ground penetrating radar data denoising with wavelet transform and curvelet transform[J]. Progress in Geophysics, 2019,34(5):2097-2105.
[17] 李红雨, 杨长保, 吴燕冈, 等. 小波变换在位场资料去噪和位场分离中的应用[J]. 世界地质, 2014,33(1):200-208.
[17] Li H Y, Yang C B, Wu Y G, et al. Application of wavelet transform for de-noising and potential field separation in gravity and magnetic data processing[J]. Global Geology, 2014,33(1):200-208.
[18] 隋成兴. 曲波变换在地震信号处理中的应用研究[D]. 西安:长安大学, 2014.
[18] Sui C X. Study on the applications of Curvelet transform in seismic data processing [D]. Xi’an:Chang'an University, 2014.
[19] 张华, 陈小宏, 李红星, 等. 曲波变换三维地震数据去噪技术[J]. 石油地球物理勘探, 2017,52(2):226-232+192.
[19] Zhang H, Chen X H, Li H X, et al. 3D seismic data de-noising approach based on Curvelet transform[J]. Oil Geophysical Prospecting, 2017,52(2):226-232,192.
[20] 董烈乾, 李振春, 王德营, 等. 第二代Curvelet变换压制面波方法[J]. 石油地球物理勘探, 2011,46(6):897-904,1012,831-832.
[20] Dong L Q, Li Z C, Wang D Y, et al. Ground-roll suppression based on the second generation Curvelet transform[J]. Oil Geophysical Prospecting, 2011,46(6):897-904,1012,831-832.
[21] 杨扬, 戴明, 周箩鱼. 基于均匀离散曲波变换的多聚焦图像融合[J]. 红外与激光工程, 2013,42(9):2547-2552.
[21] Yang Y, Dai M, Zhou L Y. Uniform discrete Curvelet transform for multi-focus image fusion[J]. Infrared and Laser Engineering, 2013,42(9):2547-2552.
[22] 陈召曦. 位场数据的曲波变换与信息提取应用[D]. 北京:中国地质大学(北京), 2012.
[22] Chen Z X. The Curvelet transform and its application to information extraction for potential data[D]. Beijing:China University of Geosciences(Beijing), 2012.
[23] 郇恒飞. 重力数据综合处理与解释在钾盐矿区的应用研究[D]. 长春:吉林大学, 2013.
[23] Huan H F. Study on integrated processing and interpretation of gravity data for the application in sylvite mine[D]. Changchun:Jilin University, 2013.
[24] 高铁, 郇恒飞, 徐英奎, 等. Curvelet变换在位场数据去噪中的应用[J]. 世界地质, 2014,33(3):671-679.
[24] Gao T, Huan H F, Xu Y K, et al. Application of Curvelet transform denoising in potential field data[J]. Global Geology, 2014,33(3):671-679.
[25] 杨斯涵. 重磁位场分离及边界识别方法研究[D]. 成都:成都理工大学, 2015.
[25] Yang S H. Study on the separation of gravity and magnetic potential field and boundary recognition method[D]. Chengdu:Chengdu University of Technology, 2015.
[26] 杨文采. 揭开南岭地壳形成演化之谜[J]. 地质论评, 2016,62(2):257-266.
[26] Yang W C. Raise the curtain on formation and evolution of Nanling mountains[J]. Geological Review, 2016,62(2):257-266.
[27] 陈国雄, 刘天佑, 孙劲松, 等. 南岭成矿带多尺度重力场及深部构造特征——《地球科学——中国地质大学学报》征稿简则[J]. 地球科学:中国地质大学学报, 2014,39(2):240-251.
[27] Cheng G X, Liu T Y, Sun J S, et al. Characteristics of multi-scale gravity field and deep structures in Nanling metallogenic belt 《Earth Science—Journal of China University of Geosciences》[J]. Earth Science:Journal of China University of Geosciences, 2014,39(2):240-251.
[28] 陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学:地球科学, 2014,44(1):111-121.
[28] Chen J, Wang R C, Zhu J C, et al. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range,South China[J]. Science China: Earth Sciences, 2014,44(1):111-121.
[29] 孙劲松. 南岭成矿带重磁场特征研究[D]. 武汉:中国地质大学, 2013.
[29] Sun J S. Study on the characteristics of gravity and magnetic field in Nanling Metallogenic Belt[D]. Wuhan:China University of Geosciences, 2013.
[30] 徐先兵, 梁承华, 陈家驹, 等. 南岭构造带基础地质特征与成矿地质背景[J/OL]. 地球科学, 2020. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html.
[30] Xu X B, Liang C H, Chen J J, et al. Fundamental geological features and metallogenic geological backgrounds of the Nanling Tectonic Belt[J/OL]. Earth Science, 2020. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html.
[31] 罗凡, 严加永, 付光明, 等. 华南地区地壳厚度变化及对成矿类型的制约:来自卫星重力数据的约束[J]. 中国地质, 2019,46(4):759-774.
[31] Luo F, Yan J Y, Fu G M, et al. Crust thickness and its apocalyptic of mineralization in South China:Constraint from Satellite Gravity data[J]. Geology in China, 2019,46(4):759-774.
[1] 孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 重力位场小波多尺度分解性质的分析与应用[J]. 物探与化探, 2022, 46(4): 946-954.
[2] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[3] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4): 750-756.
[4] 何柯, 周丽萍, 于宝利, 邓勇, 王丽丽, 王茜. 基于补偿阈值的曲波变换地面微地震弱信号检测方法[J]. 物探与化探, 2016, 40(1): 55-60.
[5] 王赛昕, 颜廷杰, 周栋良. 赣中新余式铁矿地面和井中磁测资料综合处理解释[J]. 物探与化探, 2015, 39(3): 478-484.
[6] 陈明. 广东地区矿床密集区的重力异常分析[J]. 物探与化探, 2014, (3): 465-470.
[7] 薛永安, 王勇, 李红彩, 陆树勤. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1): 81-86.
[8] 冯飞, 王德利, 张亚红, 刘伟明, 朱恒. 结合曲波变换的焦点变换 在地震数据去噪和插值中的应用[J]. 物探与化探, 2013, 37(3): 480-487.
[9] 王明, 郭志宏, 骆遥, 罗锋, 郭华, 屈进红. Tilt-Euler方法在位场数据处理及解释中的应用[J]. 物探与化探, 2012, 36(1): 126-132.
[10] 张恒磊, 刘天佑, 朱朝吉, 周肇武. 区域地质调查与资源勘查高精度磁测找矿效果——以青海尕林格矿区为例[J]. 物探与化探, 2011, 35(1): 12-16.
[11] 谢搴, 詹毅, 牛聪. 小波阈值去噪黄金分割法[J]. 物探与化探, 2006, 30(3): 254-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com