Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 482-489    DOI: 10.11720/wtyht.2022.1397
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非结构网格的带地形MT二维Occam反演及应用
姜奋勇(), 叶益信(), 陈海文, 杨烁健
东华理工大学 地球物理与测控技术学院,江西 南昌 330013
Application of 2D inversion of magnetotelluric data bearing terrain information based on an unstructured mesh
JIANG Fen-Yong(), YE Yi-Xin(), CHEN Hai-Wen, YANG Shuo-Jian
School of Geophysics and Measurement-Control Technology, East China University of Technology,Nanchang 330013,China
全文: PDF(2133 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文对基于自适应非结构三角形网格的带地形MT数据二维Occam反演进行应用研究。自适应非结构三角形网格能够准确地模拟起伏地形和复杂地质构造,正演网格由有限元解的后验误差估计指导自动细化,保证了模型响应的准确性,反演网格在反演目标区域采用精细网格剖分,在模型边界区域采用粗网格剖分,在满足反演精度的前提下减少了不必要的反演参数。基于快速Occam正则化反演方法,采用伴随方程法推导灵敏度矩阵并结合加权平方法计算模型粗糙度。通过对陆地起伏地形模型和起伏海底模型反演试算,验证了算法的精确性和适用性,能够对陆地及海底起伏地形下的多尺度结构进行成像。然后,将该方法应用于克拉玛依后山区域的实测数据反演处理中,反演得到的电阻率结构与地质资料以及采用非线性共轭梯度反演所得结果相吻合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜奋勇
叶益信
陈海文
杨烁健
关键词 非结构网格MT二维Occam反演地形克拉玛依    
Abstract

This paper focuses on the application of the 2D inversion of magnetotelluric data that bear terrain information based on an unstructured adaptive triangular mesh. An adaptive unstructured triangular grid can be used to accurately simulate undulating terrain and complex geological structures. The adaptive unstructured triangular grids for magnetotelluric forward modeling are automatically refined using the a posteriori error estimation with the finite element solution, which ensures the accuracy of the model response. As for adaptive unstructured triangular grids for magnetotelluric inversion, fine mesh generation is adopted for the inversion target areas, while coarse grid generation is utilized for the boundary areas of the model, thus reducing unnecessary inversion parameters on the premise of satisfying the inversion accuracy. According to the inversion of an undulating-terrain model of land and an undulating-seabed model, the accuracy and applicability of the algorithm are verified and the algorithm can be used to image the multi-scale structures under the undulating terrain of land and seabed. Then, the method was applied to the inversion of the measured data of the Houshan area in Karamay. As a result, the resistivity structure obtained through the inversion was consistent with the geological data and the results obtained through the nonlinear conjugate gradient inversion.

Key wordsunstructured mesh    MT    2D inversion    terrain    Karamay
收稿日期: 2021-07-16      修回日期: 2021-09-25      出版日期: 2022-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“带复杂海底地形的海洋可控源电磁法三维正反演研究”(41774078);江西省自然科学基金青年重点项目“基于非结构双网格的频率域可控源电磁法三维快速反演研究”(20202ACBL211006)
通讯作者: 叶益信
作者简介: 姜奋勇(1996-),男,研究方向为电法勘探正反演。Email: stujiangfy@163.com
引用本文:   
姜奋勇, 叶益信, 陈海文, 杨烁健. 基于非结构网格的带地形MT二维Occam反演及应用[J]. 物探与化探, 2022, 46(2): 482-489.
JIANG Fen-Yong, YE Yi-Xin, CHEN Hai-Wen, YANG Shuo-Jian. Application of 2D inversion of magnetotelluric data bearing terrain information based on an unstructured mesh. Geophysical and Geochemical Exploration, 2022, 46(2): 482-489.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1397      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/482
Fig.1  陆地起伏地形模型
Fig.2  陆地起伏地形模型不通细化次数网格剖面
细化次数 节点数 单元数
1 2137 4246
2 2977 5910
3 4493 8933
4 6644 13228
5 9526 18986
6 13448 26823
7 18815 37548
8 26028 51965
9 35471 70849
Table 1  陆地起伏地形模型网格自适应细化次数
Fig.3  反演初始模型及其网格剖分
种类 数值
迭代次数/次 69
消耗时间/h 7
RMS 4.91
占用内存/GB 12
Table 2  反演参数
Fig.4  陆地起伏地形模型反演结果
Fig.5  真实模型响应(a)与反演模型响应(b)拟断面
Fig.6  起伏海底模型
细化次数 节点数 单元数
1 2299 4549
2 3098 6142
3 4304 8548
4 5965 11869
5 8556 17048
6 11651 23230
7 15885 31693
8 21834 43579
9 30020 59933
10 41090 82060
11 56278 112421
12 76582 153009
13 79516 158768
Table 3  起伏海底模型网格自适应细化次数
种类 数值
迭代次数/次 21
消耗时间/min 91.5
RMS 1.1518
占用内存/GB 3.35
Table 4  反演参数
Fig.7  起伏海底模型反演结果
Fig.8  真实模型响应(a)与反演模型响应(b)拟断面
Fig.9  研究区地质与测线布置
Fig.10  测线地质剖面(a)和MT数据非线性共轭梯度反演结果(b)
Fig.11  MT数据Occam反演电阻率浅部断面
Fig.12  MT数据Occam反演电阻率深部断面
[1] Huang X Y, Deng J Z, Chen X, et al. Magnetotelluric extremum boundary inversion based on different stabilizers and its application in a high radioactive waste repository site selection[J]. Applied Geophysics, 2019, 16(3) : 367-377.
doi: 10.1007/s11770-019-0755-4
[2] 李磊. 湘南骑田岭锡铅锌多金属矿区岩矿石电性研究[J]. 物探与化探, 2007(S1) : 77-80,93.
[2] Li L. Researchs on rock electrical properties in the Qittianling,lead and zinc polymetallic ore deposit,southern HuNan[J]. Geophysical and Geochemical Exploration, 2007(S1) : 77-80,93.
[3] 熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3):587-593.
[3] Xiong B, Luo T Y, Cai H Z, et al. Two-dimensional magnetotelluric inversion of undulating terrain[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 587-593.
[4] Alan G J. Distortion decomposition of the magnetotelluric impedance tensors from a one-dimensional anisotropic Earth[J]. Geophysical Journal International, 2012, 189(1): 268-284.
doi: 10.1111/j.1365-246X.2012.05362.x
[5] Juanjo L, Pilar Q, Jaume P. Effects of galvanic distortion on magnetotelluric data over a three-dimensional regional structure[J]. Geophysical Journal International, 1998(2) : 295-301.
[6] Franke A, Borner R, Spitzer K, et al. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography[J]. Geophysical Journal International, 2007, 171(1) : 71-86.
doi: 10.1111/j.1365-246X.2007.03481.x
[7] Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry Theory & Applications, 2002, 47(1-3) : 741-778.
[8] Cao X Y, Yin C C, Zhang B, et al. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. Chinese Geophysical Society, 2018, 15(3) : 556-565.
[9] 惠哲剑, 殷长春, 刘云鹤, 等. 基于非结构有限元的时间域海洋电磁三维反演[J]. 地球物理学报, 2020, 63(8) : 3167-3179.
[9] Hui Z J, Yin C C, Liu Y H, et al. 3D inversion of time-domain marine CSEM based on unstructured finite element method[J]. Chinese Journal of Geophysics, 2020, 63(8) : 3167-3179.
[10] Kerry K, Chester W. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. Society of Exploration Geophysicists, 2006, 71(6) : G291-G299.
[11] Li Y G, Key K. 2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm[J]. Geophysics, 2007, 72(2) : WA51.
[12] Li Y G, Josef P, et al. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media[J]. Geophysical Journal International, 2008, 175(3) : 942-954.
doi: 10.1111/j.1365-246X.2008.03955.x
[13] 刘颖, 李予国, 韩波. 可控源电磁场三维自适应矢量有限元正演模拟[J]. 地球物理学报, 2017, 60(12) : 4874-4886.
[13] Liu Y, Li Y G, Han B. Adaptive edge finite element modeling of the 3D CSEM field on unstructured grids[J]. Chinese Journal of Geophysics, 2017, 60(12) : 4874-4886.
[14] Ovall J S. Asymptotically exact functional error estimators based on superconvergent gradient recovery[J]. Numerische Mathematik, 2006, 102(3) : 543-558.
doi: 10.1007/s00211-005-0655-9
[15] Key K, Ovall J. A parallel goal-oriented adaptive finite element method for 2.5D electromagnetic modelling[J]. Geophysical Journal International, 2011. 186(1) : 137-154.
doi: 10.1111/j.1365-246X.2011.05025.x
[16] 韩骑, 胡祥云, 程正璞, 等. 自适应非结构有限元MT二维起伏地形正反演研究[J]. 地球物理学报, 2015, 58(12) : 4675-4684.
[16] Han Q, Hu X Y, Chen Z P, et al. A study of two dimensional MT inversion with steep topography using the adaptive unstructured finite element method[J]. Chinese Journal of Geophysics, 2015, 58(12) : 4675-4684.
[17] Key K. MARE2DEM: A 2D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophysical Journal International, 2016, 207(1) : 571-588.
doi: 10.1093/gji/ggw290
[18] Constable S C, Parker R L, Constable C G. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3) : 289-300.
doi: 10.1190/1.1442303
[19] 何梅兴, 胡祥云, 叶益信, 等. 2.5维可控源音频大地电磁法Occam反演理论及应用[J]. 地球物理学进展, 2011, 26(6) : 2163-2170.
[19] He M X, Hu X Y, Ye Y X, et al. 2.5D controlled source audio-frequency magnetotellurics occam inversion[J]. Progress in Geophysics, 2011, 26(6) : 2163-2170.
[20] 熊彬, 罗延钟, 强建科. 瞬变电磁2.5维反演中灵敏度矩阵计算方法(Ⅰ)[J]. 地球物理学进展, 2004, 19(3) : 616-620.
[20] Xiong B, Luo Y Z, Qiang J K. Methods for calculating sensitivities for 2.5D transient electromagnetic inversion[J]. Progress in Geophysics, 2004, 19(3) : 616-620.
[21] Farquharson C G, Oldenburg D W. Approximate sensitivities for the electromagnetic inverse problem[J]. Geophysical Journal International, 1996, 126(1) : 235-252.
doi: 10.1111/j.1365-246X.1996.tb05282.x
[22] Mcgillivray P R, Oldenburg D W, Ellis R G, et al. Calculation of sensitivities for the frequency-domain electromagnetic problem[J]. Geophysical Journal International, 1994, 116(1) : 1-4.
doi: 10.1111/j.1365-246X.1994.tb02121.x
[23] Parker R L. Geophysical inverse theory[M]. Princeton: Princeton University Press, 1994.
[24] Zhdanov M S. Inverse theory and applications in geophysics[M]. New York: Elsevier, 2002.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[3] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[4] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[5] 张菲菲, 王万银, 李倩, 王林, 马静. DEM网格间距及校正半径对重力地形校正的影响[J]. 物探与化探, 2023, 47(3): 597-607.
[6] 屈进红, 姜作喜, 周锡华, 王明, 罗锋. 基于直升机航空重力同步地形的布格改正处理[J]. 物探与化探, 2023, 47(2): 447-457.
[7] 程正璞, 郭淑君, 魏强, 周乐, 雷鸣, 李戍. AMT地形影响与带地形反演研究[J]. 物探与化探, 2023, 47(1): 146-155.
[8] 贺景龙, 王占彬, 寇少磊, 杨凯. 基于C#的MTU系列大地电磁测深仪数据文件的研究与应用[J]. 物探与化探, 2023, 47(1): 171-178.
[9] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[10] 吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5): 1180-1186.
[11] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[12] 耿涛, 杜辉, 冯治汉. 基于测点实测高程修正重力中区地改误差评价方法的探讨[J]. 物探与化探, 2021, 45(6): 1521-1529.
[13] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[14] 虎新军, 陈晓晶, 李宁生, 仵阳, 陈涛涛. 银川盆地东缘黄河断裂展布特征新认识[J]. 物探与化探, 2021, 45(4): 913-922.
[15] 岳大斌, 王章翔, 陈加中, 杨秀娟. 综合技术方法在寻找含矿岩浆通道中的应用——以四川杨柳坪岩浆铜镍硫化物矿床为例[J]. 物探与化探, 2021, 45(3): 601-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com