Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1180-1186    DOI: 10.11720/wtyht.2022.1602
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征
吴旭亮1,2,3(), 李茂1,2,3()
1.核工业航测遥感中心,河北 石家庄 050002
2.中核集团铀资源地球物理勘查技术中心(重点实验室),河北 石家庄 050002
3.河北省航空探测与遥感技术重点实验室,河北 石家庄 050002
Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT
WU Xu-Liang1,2,3(), LI Mao1,2,3()
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China
2. CNNC Key Laboratory for Geophysical Exploration Technology Center of Uranium Resource, Shijiazhuang 050002, China
3. Hebei Province Aviation Detection and Remote Sensing Technology Key Laboratory, Shijiazhuang 050002, China
全文: PDF(5130 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为减少铀矿钻探工程风险,基于音频大地电磁法(AMT)资料,对龙首山成矿带中的马路沟断裂及次级断裂的深部发育特征进行了探究。通过对马路沟断裂与次级断裂正演理论模型响应特征分析,论证了方法的可行性,在此基础上,结合地质、岩石电性参数和钻探资料,对反演电阻率断面进行了推断解释,大致查明了区内断裂的深部发育特征。研究结果表明:马路沟断裂(F101)走向NW,倾角约80°,其中X501—X502剖面之间倾向NE,X502—X506剖面倾向SW;次级断裂F102、F103走向NW,均倾向NE,倾角75°~80°;上述断裂具有切割深度大、倾角较陡特征。该结果为后期钻探工程的布置提供了依据,提升了铀矿地质勘查的效果与效益。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴旭亮
李茂
关键词 AMT断裂龙首山成矿带深部构造    
Abstract

This study explored the deep occurrence characteristics of the Malugou fault and its secondary faults in the study area based on the data obtained using audio-frequency magnetotellurics (AMT), aiming to provide a basis for the drilling layout and improve the effects and benefits of the geological exploration of uranium deposits. The feasibility of the AMT method was demonstrated by analyzing the response characteristics of the forward theoretical model of the Malugou fault and its secondary faults. Based on this, this study deduced and interpreted the inverted resistivity cross-sections by combining geological setting, the electrical parameters of rocks, and the drilling data collected. As a result, the deep development characteristics of faults in the study area were roughly identified, and the details are as follows. The Malugou fault (F101) has an NW strike, a dip angle of approximately 80°, and dip directions of NE and SW along sections X501-X502 and sections X502-X506, respectively. Secondary faults F102 and F103 have an NW strike, a dip direction of NE, and a dip angle of 75°~80°. The above-mentioned faults are characterized by large cutting depths and high dip angles.

Key wordsAMT    fault    Longshoushan metallogenic belt    deep structure
收稿日期: 2021-11-10      修回日期: 2022-06-07      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:中国核工业地质局项目“甘肃省龙首山成矿带中东段西岔地段物探测量”(2015-111)
通讯作者: 李茂
作者简介: 吴旭亮(1987-),男,高级工程师,主要从事铀矿地质勘查工作。Email:Xuliang16@126.com
引用本文:   
吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5): 1180-1186.
WU Xu-Liang, LI Mao. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT. Geophysical and Geochemical Exploration, 2022, 46(5): 1180-1186.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1602      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1180
Fig.1  研究区地质简图及物探测线布置
地层 岩性 电阻率/(Ω·m)
范围 常见值
P t 1 2t 板岩 117.7~1132.5 257
大理岩 426.5~2357.3 1520
γ 3 3 - 1 γ 3 3 - 3 中粗粒、中细粒
花岗岩
236.2~1612.7(完整性较好) 682
100.6~474.2(完整性较差) 291
γ 3 3 - 2 中粗粒斑状花岗岩 378.2~1283.5 833
δ 3 1 - 2 中细粒闪长岩 330.5~1220.6 1140
Table 1  研究区岩石电阻率参数统计
Fig.2  已知地质体正演理论模型响应特征
Fig.3  X501典型剖面地电特征
Fig.4  X503剖面反演电阻率地质推断解释断面与勘探地质剖面对比
Fig.5  X506剖面反演电阻率地质解释断面
Fig.6  研究区马路沟断裂与次级断裂空间展布特征
[1] 赵如意, 王刚, 陈云杰, 等. 甘肃省龙首山成矿带铀资源调查评价报告[R]. 咸阳: 核工业203研究所, 2014.
[1] Zhao R Y, Wang G, Chen Y J, et al. Investigation and evaluation report on uranium resources in Longshoushan metallogenic belt, Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2014.
[2] 王承花. 龙首山成矿带成矿规律及找矿方向[J]. 甘肃科技, 2010, 26(10):39-44.
[2] Wang C H. Metallogenic regularity and prospecting direction of Longshoushan metallogenic belt[J]. Geology of Gansu, 2010, 26(10): 39-44.
[3] 宋振涛, 张立新, 管少斌, 等. 龙首山成矿带铀成矿规律及其地质构造运动、地壳演化关系探讨[J]. 矿产与地质, 2018, 32(5):792-793.
[3] Song Z T, Zhang L X, Guan S B, et al. The discussion of uranium mineralization regularity of Longshoushan metallogenic belt and its relationship with geological tectonic movement and crustal evolution[J]. Mineral Resources and Geology, 2018, 32(5): 792-793.
[4] 赵如意, 王刚, 陈云杰, 等. 甘肃省龙首山成矿带西岔—芨岭西铀资源调查评价报告[R]. 咸阳: 核工业203研究所, 2015.
[4] Zhao R Y, Wang G, Chen Y J, et al. Investigation and evaluation report on uranium resources in Xicha-Changling west area of Longshoushan metallogenic belt, Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2015.
[5] 安国堡, 辛存林, 杨涛, 等. 甘肃龙首山成矿带地质构造演化及其对铀成矿的控制作用[J]. 地球科学与环境学报, 2016, 38(6):804-805.
[5] An G B, Xin C L, Yang T, et al. Geotectonic evolution of Longshoushan metallogenic belt in gansu and its control function on uranium[J]. Journal of Earth Sciences and Environment, 2016, 38(6): 804-805.
[6] 陈云杰, 赵如意. 甘肃龙首山地区芨岭铀矿床隐爆角砾岩发现及成因探讨[J]. 地质勘探, 2012, 48(6):1101-1108.
[6] Chen Y J, Zhao R Y. Discovery and genesis of cryptoexplosive breccia in Jiling uranium deposit,Longshoushan area,Gansu Province[J]. Geologic Survey, 2012, 48(6): 1101-1108.
[7] 贾恒, 荣骁, 等. 甘肃省龙首山成矿带芨岭东—牛角沟地区铀矿预查报告[R]. 咸阳:核工业203研究所, 2017.
[7] Jia H, Rong X, et al. Pre-investigation report on uranium deposits in Jiling-Niujiaogou west area of Longshoushan metallogenic belt,Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2017.
[8] 王会波, 王志宏, 陈志财, 等. 甘肃省龙首山小青羊—白芨芨地区物探测量项目报告[R]. 石家庄:核工业航测遥感中心, 2013.
[8] Wang H B, Wang Z H, Chen Z C, et al. Geophysical survey report of Xiaoqingyang-Baijiji rrea in Longshou mountain, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2013.
[9] 李茂, 陈志财, 吴勇, 等. 甘肃省龙首山成矿带火石岭-新水井地区物探测量报告[R]. 石家庄:核工业航测遥感中心, 2014.
[9] Li M, Chen Z C, Wu Y, et al. Geophysical survey report of Huoshiling-Xinshuijing area in Longshou mountain, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2014.
[10] 刘波, 宋振涛, 李肖, 等. 芨岭岩体北部地区革命沟断裂地电结构特征[J]. 物探与化探, 2016, 40(5):877-878.
[10] Liu B, Song Z T, Li X, et al. Geoelectrical characteristics of Geminggou fracture in northern Jiling mass[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 877-878.
[11] 宋振涛, 祁程, 韩栋昱. 芨岭地区铀矿地质-地球物理特征研究[J]. 物探与化探, 2018, 42(5):910-911.
[11] Song Z T, Qi C, Han D Y. Study on geological and geophysical characteristics of uranium deposits in Jiling area[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 910-911.
[12] 谢明宏, 李茂. 芨岭岩体南部牛角沟断裂深部发育特征[J]. 矿产与地质, 2019, 33(3):516-517.
[12] Xie M H, Li M. Deep development characteristics of Niujiaogou fault in south of changling pluton[J]. Deposit and Geology, 2019, 33(3): 516-517.
[13] 李茂, 宋振涛, 陈志财, 等. 甘肃省龙首山成矿带中东段西岔地段物探测量项目报告[R]. 石家庄:核工业航测遥感中心, 2015.
[13] Li M, Song Z T, Chen Z C, et al. Geophysical survey report of Xichag section of Longshou mountain metallogenic belt, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2015.
[14] 高翔, 李茂, 牛禹, 等. 高岭子井地段马路沟断裂产状及深部延伸特征[J]. 矿产与地质, 2018, 32(3):521-522.
[14] Gao X, Li M, Niu Y. Dccurrence and deep extension characteristics of Malugou fault in Gaolingzijing section[J]. Deposit and Geology, 2018, 32(3): 521-522.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[3] 虎新军, 陈晓晶, 仵阳, 白亚东, 赵福元. 基于地球物理资料的宁夏南部地区断裂格架特征分析[J]. 物探与化探, 2023, 47(4): 916-925.
[4] 杨荣祥, 王万银, 蔡梦轲, 王丁丁, 罗新刚. 基于卫星重力异常的渤海盆地秦南凹陷及邻区构造格局研究[J]. 物探与化探, 2023, 47(3): 584-596.
[5] 张磊, 王万银, 汪孝博, 李文, 张雪丽, 宋豪, 杨敏, 安黎明. 基于重磁场特征的洛宁地区构造特征研究及矿产预测[J]. 物探与化探, 2023, 47(3): 608-617.
[6] 刘军, 黄超, 杨林, 张永升, 查明. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3): 747-756.
[7] 张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
[8] 张保卫, 岳航羽, 谢伟, 房苏, 徐昊, 王凯. 反射地震在冀中坳陷保定凹陷精细地质结构探测中的应用[J]. 物探与化探, 2022, 46(6): 1359-1368.
[9] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[10] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
[11] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[12] 王亮, 胡从亮, 张嘉玮, 陈国勇, 张美雪, 杨武, 张应文. 贵州区域地热成因探讨[J]. 物探与化探, 2022, 46(2): 304-315.
[13] 张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
[14] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[15] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com