Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 344-351    DOI: 10.11720/wtyht.2022.1066
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
北京平原区隐伏断裂与氡浓度响应关系
张晓亮1(), 白凌燕1(), 倪敬波1, 王志辉2, 赵勇1, 何付兵1
1.北京市地质调查研究所,北京 100195
2.中国地质调查局 中国地质科学院地球深部探测中心,北京 100037
Relationship between concealed faults and radon concentration in plain areas of Beijing
ZHANG Xiao-Liang1(), BAI Ling-Yan1(), NI Jing-Bo1, WANG Zhi-Hui2, ZHAO Yong1, HE Fu-Bing1
1. Beijing Institute of Geological Survey, Beijing 100195, China
2. SinoProbe Center, Chinese Academy of Geological Sciences,China Geological Survey,Beijing 100037, China
全文: PDF(3045 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

北京地区隐伏断裂发育,NW及NE向断裂相互交汇,成为未来可能发生地震的构造。为了研究活动断裂与土壤氡浓度的响应关系,本次对北京平原区NW和NE向2条剖面进行了氡浓度测量。通过测试分析,基本查明了隐伏构造与土壤氡浓度的对应关系以及影响土壤氡浓度的相关地质因素。研究表明,活动断裂存在的区域氡浓度明显高于周边区域,且在构造复杂与活动性强的断裂区域氡浓度值变化更为明显;新生界厚度对氡的散逸强度存在一定的制约,北京地区新生界厚度与氡浓度水平成正相关;不同成土母质核素比活度不同,对区域氡浓度背景值亦存在影响。本次研究成果确定了隐伏断裂与土壤氡浓度的对应关系,以及新生界厚度和不同成土母质土壤对土壤氡浓度的影响,为今后在平原区开展隐伏断裂调查及氡浓度研究工作有重要借鉴和指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓亮
白凌燕
倪敬波
王志辉
赵勇
何付兵
关键词 土壤氡核素比活度氡浓度隐伏断裂城市地质    
Abstract

Concealed faults are developed in the Beijing area. They intersect with NW- and NE-trending faults, forming a potential tectonic background of earthquakes in the future. To study the relationship between active faults and the radon concentration in soil, this study measured the radon concentration of two profiles (NW- and NE-trending) in plain areas of Beijing. Through tests and analysis, this study roughly ascertained the relationship between concealed structures and the radon concentration in soil, as well as the geological factors influencing the radon concentration of soil. The results show that the radon concentration in areas with active faults is significantly higher than that in the surrounding areas, and the radon concentration in areas with complex structure and highly active faults changes more noticeably. The depth of Cainozoic strata constrains the dissipation of radon to a certain extent, and there is a positive correlation between the depth of Cainozoic strata and the radon concentration in soil. The specific activity of radionuclides in parent rocks with different soil quality also affects the background value of regional radon concentration. The results of this study determined the relationship between concealed faults ahe specific activity of radionuclides in parent rocks with different soil quality also affect the background value of regional radon concentration. The results of this nd the radon concentration in soil and identified the influence of the thickness of Cainozoic strata and parent rocks with different soil quality on the radon concentration in soil, thus serving as an important reference and guidance for the surveys of concealed faults and the research on radon concentration in plain areas of Beijing in the future.

Key wordsradon in soil    specific activity of radionuclides    radon concentration    burial fault    urban geology
收稿日期: 2021-02-03      修回日期: 2021-08-19      出版日期: 2022-04-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“北京地区主要活动断裂精细调查及灾害效应调查”(12120113012000);北京市地质矿产勘查开发局项目“通州区南部(751 km2)重大地质问题调查与评价”(PXM2019_158203_000005);“北京平原区要活动断裂监测与维护”(PXM2021-158203-000008)
通讯作者: 白凌燕
作者简介: 张晓亮(1982-),男,硕士,教授级高级工程师。研究方向为地球物理、城市活动断裂研究。Email: zxlddy@163.com
引用本文:   
张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
ZHANG Xiao-Liang, BAI Ling-Yan, NI Jing-Bo, WANG Zhi-Hui, ZHAO Yong, HE Fu-Bing. Relationship between concealed faults and radon concentration in plain areas of Beijing. Geophysical and Geochemical Exploration, 2022, 46(2): 344-351.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1066      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/344
Fig.1  研究区构造单元简图
Fig.2  工作区测氡剖面部署
测线编号 测点数 背景值/
(Bq·m-3)
平均值/
(Bq·m-3)
样本均方差/
(Bq·m-3)
异常阈值/
(Bq·m-3)
异常峰值/
(Bq·m-3)
异常阈值/背景值 异常峰值/背景值
D1(aa') 141 1874 1920 1692 5304 10260 2.83 5.47
D2(bb') 93 752 771 662 2095 3132 2.78 4.16
Table 1  两条测线中氡浓度变化统计
Fig.3  测线D1(aa')氡浓度与地质联合剖面
剖面分区 背景值/
(Bq·m-3)
平均值/
(Bq·m-3)
均方差/
(Bq·m-3)
异常阈值/
(Bq·m-3)
异常点数 影响断裂
I区 1793 1808 1234 4276 0
II区 2869 3024 2878 8780 2 顺义断裂
III区 1482 1504 845 3194 3 南苑—通县断裂;北臧村断裂
全剖面 1874 1920 1692 5304 6 顺义断裂、孙河断裂、东坝断裂、楼梓庄断裂
Table 2  D1(aa')测线氡浓度变化统计
Fig.4  测线D2(bb')氡浓度与地质联合剖面(图例同图3)
剖面分区 背景值/
(Bq·m-3)
平均值/
(Bq·m-3)
均方差/
(Bq·m-3)
异常阈值/
(Bq·m-3)
异常点数 影响断裂
北京凹陷 598 640 543 1685 1 南苑—通县断裂
大兴隆起 820 875 714 2249 2 瀛海断裂、礼贤断裂
大厂凹陷 707 790 761 2230 2 夏垫断裂、东庄断裂
全剖面 752 771 1692 2095 6 永定河断裂、南苑—通县断裂、瀛海断裂、
礼贤断裂、夏垫断裂、东庄断裂
Table 3  D2(bb')测线氡浓度变化统计
土壤类型 氡、钍元素 扩散系数/
(10-2 cm·s-1)
土质砂土 3.3
干石英砂 6.5
砂子(孔隙度40%) 4.5~7.0
砂质黏土 钍射气 3.5
壤土(天然产状下) 1.0~3.0
残积—坡积碎屑沉积物 4.5
Table 4  不同岩石中氡、钍元素扩散系数
Fig.5  不同地区核素比活度柱状图
Fig.6  不同岩性核素比活度柱状图
[1] 刘春来, 庹先国, 黄连美, 等. 地下氡气测量推断隐伏断层走向[J]. 物探与化探, 2011, 35(2):226-229.
[1] Liu C L, Tuo X G, Huang L M, et al. The deduction ofthe strike ofthe geological concealed fault based on underground radon measurement[J]. Geophysical and Geochemical Exploration, 2011, 35(2) :226-229.
[2] 张晓亮, 方同明, 韩毅, 等. 关于北京市平原区测氡定位隐伏活动断裂的探讨[J]. 城市地质, 2013, 8(1):13-17.
[2] Zhang X L, Fang T M, Han Y, et al. Discussion on radon measurement locating the concealed active fractures in Beijing Plain area[J]. Urban Geology, 2013, 8(1): 13-17.
[3] 汪成民, 李宣瑚. 我国断层气体测量在地震科学研究中的应用现状[J]. 中国地震, 1991, 7(2):21-32.
[3] Wang C M, Li X H. Applications of fracture-gas measurement tothe earthquake studies in China[J]. Earthquake Research in China, 1991, 7(2): 21-32.
[4] 焦德成, 潘祖寿, 王增光, 等. 断层气测量用于银川地堑隐伏断裂活动性的研究[J]. 防灾减灾学报, 2012, 28(3):41-47.
[4] Jiao D C, Pan Z S, Wang Z G, et al. Research on buried faults’ activity of Yinchuan basin by using fault gas measurement[J]. Journal of Disaster Prevention and Reduction, 2012, 28(3): 41-47
[5] 戴华林, 胡建平, 包乾宗, 等. 关于浅层地震勘探和测氡定位隐伏断裂的初步探讨[J]. 西安工程学院学报, 2001, 23(4):66-68.
[5] Dai H L, Hu J P, Bao Q Z, et al. Discussion on shallow seismic prospecting and radon survey in the potential faults[J]. Journal of Xi’an Engineering University, 2001, 23(4): 66-68.
[6] 曾敏, 董好刚, 张宏鑫, 等. 土壤氡气测量在沙湾断裂带中的段隐伏断裂探测中的应用研究[J]. 地震研究, 2012, 35(3):347-352.
[6] Zeng M, Dong H G, Zhang H X, et al. Application research of soil radon measurement in concealed fault detection of middle segment of Shawan fault zone[J]. Journal of Seismological Research, 2012, 35(3): 347-352.
[7] 杜建国, 宇文欣, 李圣强, 等. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震, 1998, 18(2):155-162.
[7] Du J G, Yu W X, Li S Q, et al. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake, 1998, 18(2): 155-162.
[8] 王广才, 王基华, 刘成龙, 等. 福州市隐伏断层地球化学实验探测及研究[J]. 地震地质, 2002, 24(2):594-600.
[8] Wang G C, Wang J H, Liu C L, et al. A trial geochemical prospecting for buried active faults in Fuzhou City[J]. Seismology and Geology, 2002, 24(2): 594-600.
[9] 周晓成, 郭文生, 杜建国, 等. 呼和浩特地区隐伏断裂土壤氡、汞地球化学特征[J]. 地震, 2007, 27(1):70-76.
[9] Zhou X C, Guo W S, Du J G, et al. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 2007, 27(1): 70-76.
[10] 王秋良, 王恒希, 陈圆圆, 等. 土氡测量在城市断层探测中的应用[J]. 大地测量与地球动力学, 2010, 30(1):38-42.
[10] Wang Q L, Wang H X, Chen Y Y, et al. Application of soil radon measurement in urban fault surveying[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 38-42.
[11] 黄秀铭, 汪良谋, 徐杰, 等. 北京地区新构造运动特征[J]. 地震地质, 1991, 13(1):43-51.
[11] Huang X M, Wang L M, Xu J, et al. Characteristics of neotectonic movement in Beijing area[J]. Seismology and Geology, 1991, 13(1): 43-51.
[12] 章晔, 程业勋, 刘庆成, 等. 环境氡的来源于防治对策[J]. 物探与化探, 1999, 23(2):81-83.
[12] Zhang Y, Cheng Y X, Liu Q C, et al. Sources of environmental radon and countermeasures for its prevention and control[J]. Geophysical and Geochemical Exploration, 1999, 23(2): 81-83.
[13] 刘汉彬, 范光. 民用建筑工程场地土壤氡浓度测量[J]. 世界核地质科学, 2004, 21(1):51-54.
[13] Liu H B, Fan G. The measurement of radon concentration of soil in a civil construction site[J]. World Nuclear Geoscience, 2004, 21(1): 51-54.
[14] 王晓丽. 活断层上覆土壤盖层中氡气运移正演问题研究[D]. 长春: 吉林大学, 2007.
[14] Wang X L. A forward study of radon gas migration in soil overburden above active fault[D]. Changchun: Jilin University, 2007.
[15] 徐仁崇, 桂苗苗, 彭军芝, 等. 厦门市土壤氡浓度水平及其分布规律调查[J]. 辐射防护, 2012, 32(2):125-128.
[15] Xu R C, Gui M M, Peng J Z, et al. Investigation on soil radon concentration levels and distribution in Xiamen[J]. Radiation Protection, 2012, 32(2): 125-128.
[16] 杨斌. 南通市土壤放射性环境本底调查[J]. 中国辐射卫生, 2013, 22(2):198-200.
[16] Yang B. Survey on the background of soil radioactive environment in Nantong[J]. Chinese Journal of Radiological Health, 2013, 22(2): 198-200.
[17] 王志成. 土氡测量在海口市活断层探测中的初步应用[J]. 华南地震, 2006, 26(4):61-66.
[17] Wang Z C. Preliminary application of soil radon measurement method in active fault survey in Haikou City[J]. South China Journal of Seismology, 2006, 26(4): 61-66.
[18] Gao M L, G H L, Chen B B, et al. InSAR time-series investigation of long-term ground displacement at Bejing Capital International Airport,China[J]. Tectonophysics, 2016, 691: 271-281.
doi: 10.1016/j.tecto.2016.10.016
[19] 陆丽娜. 土壤气汞探测在夏垫断裂带的应用研究[J]. 地质与勘探, 2018, 54(1):112-120.
[19] Lu L N. The application of soil-gas mercury detection to the Xiadian fault zone[J]. Geology and Exploration, 2018, 54(1): 112-120.
[20] 陈华英. 泉州市、晋江市土壤中氡气浓度与地质背景的关系[J]. 物探与化探, 2009, 33(2):186-189.
[20] Chen H Y. The relationship between radon gas concentration and geological background of Quanzhou City and Jinjiang City[J]. Geophysical and Geochemical Exploration, 2009, 33(2): 186-189.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 梁雨东, 任康辉, 姜鑫, 丁保艳, 童品贤, 胡沛青. 活性炭测氡法在地热勘探中的应用——以张掖—民乐盆地为例[J]. 物探与化探, 2022, 46(6): 1419-1424.
[4] 王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
[5] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[6] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[7] 雷波, 兰明, 贺锋, 鲁宝龙, 罗才武. 基于熵—中位数子区滤波提取土壤氡气浓度异常——以甘肃省花海盆地为例[J]. 物探与化探, 2021, 45(4): 1064-1070.
[8] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[9] 陈基炜, 赵东东, 宗全兵, 张宝松, 邸兵叶, 朱红兵, 王佳龙. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2): 536-545.
[10] 李英宾, 谢明宏, 张占彬, 李毅, 魏滨, 张伟. 综合物探方法在上杭盆地古石背地区铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1283-1293.
[11] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[12] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[13] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[14] 王永飞, 李宝新, 曹云, 刘晨阳. 地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用[J]. 物探与化探, 2020, 44(1): 99-106.
[15] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com