Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 304-315    DOI: 10.11720/wtyht.2022.1228
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
贵州区域地热成因探讨
王亮1,2(), 胡从亮1, 张嘉玮1,2(), 陈国勇3, 张美雪4, 杨武5, 张应文6
1.贵州省地质调查院, 贵州 贵阳 550081
2.贵州省地质物探开发应用工程技术研究中心, 贵州 贵阳 550081
3.贵州省地质矿产勘查开发局,贵州 贵阳 550004
4.贵州省地质环境监测院, 贵州 贵阳 550081
5.贵州省地矿局 地球物理地球化学勘查院,贵州 贵阳 550018
6.贵州省地矿局 102地质大队,贵州 遵义 563003
Exploration of the genesis of regional geothermal resources in Guizhou Province
WANG Liang1,2(), HU Cong-Liang1, ZHANG Jia-Wei1,2(), CHEN Guo-Yong3, ZHANG Mei-Xue4, YANG Wu5, ZHANG Ying-Wen6
1. Guizhou Institute of Geological Survey,Guiyang 550081,China
2. Guizhou Engineering Research Center for Geologic-Geophysical Exploration Development and Application,Guiyang 550081,China
3. Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China
4. Guizhou Institute of Geo-Environmental Monitoring,Guiyang 550081,China
5. Institute of Geophysics and Geochemistry Prospecting,Guizhou Bureau of Geology and Mineral Exploration and Development,Guiyang 550018,China
6. No.102 Geological Party, Guizhou Bureau of Geology and Mineral Exploration and Development,Zunyi 563003,China
全文: PDF(1751 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

关于贵州地热成因,人们多倾向于地震活动和断裂控制“地温梯度”机械能升温,不具备岩浆热源及放射性产热条件。本文通过研究前人成果和热储、盖层特征及区域重磁等资料,推测深部断裂和中酸性、基性—超基性岩体,分析天然地热及地热井的区域分布特性,并结合有关的地质资料,提出贵州地热可能存在2种基本成因模式:一是深部断裂控制的“地温梯度”自动增温循环生热,该导热方式驱使地下水持续升温最为发育,二是岩浆岩余热作用,此导热方式的推测作为一种新的产热类型及成因来源补充,而贵州作为我国重要的铀、钍等资源区域成矿地区,目前研究程度低、资料少、规模小,是否存在放射性生热基础尚不清楚。对地热成因深入研究,可为下步区内精准地热调查和找矿方向拓展提供相关依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亮
胡从亮
张嘉玮
陈国勇
张美雪
杨武
张应文
关键词 热储盖层深大断裂活动断裂地热成因贵州    
Abstract

Regarding the genesis of the geothermal resources in Guizhou Province, most researchers tend to think that the geothermal resources were formed from the temperature rise induced by the mechanical energy of the “geothermal gradient” controlled by seismic activities and faults and that the geothermal resources do not possess from magma heat sources nor have the conditions of radioactive heat generation. Based on the research on the previous achievements, the characteristics of geothermal reservoirs and cap rocks, and regional gravity and magnetic data, the inference of the deep faults and intermediate-acid and basic-ultrabasic rock masses, and the analysis of regional distribution characteristics of natural geothermal resources and geothermal wells, this study proposes two possible basic genetic models of the geothermal resources in Guizhou. One is that automatic temperature rise and cyclic heat generation caused by the “geothermal gradient” controlled by deep faults. The groundwater with continuous temperature rise driven by this model is the most developed. The other genesis is the waste heat of magmatic rocks. It is inferred as a new type of heat generation and genesis supplement. As an important regional metallogenic region of uranium and thorium in China, Guizhou Province has only been researched at a low level and on a small scale, with a small amount of available data. Therefore, it is not clear whether there are basic conditions of radioactive heat generation in Guizhou Province. The in-depth study on the genesis of geothermal resources can provide relevant bases for the accurate surveys of geothermal resources and the expansion of prospecting direction in Guizhou Province in the future.

Key wordsgeothermal resources    cap rock    deep fault    active fault    genesis    Guizhou
收稿日期: 2021-04-26      修回日期: 2021-08-16      出版日期: 2022-04-20
ZTFLH:  P314.1  
  P314.2  
  P314.3  
基金资助:贵州省地质矿产勘查开发局重大科研专项“黔西北地区铅锌找矿攻关”(黔地矿纪要(2015)14号);贵州省地质物探开发应用工程技术研究中心项目(黔科合[2016]平台人才5401);贵州省科技计划项目“贵州省地质调查院院士工作站”(黔科合平台人才[2018]5626)
通讯作者: 张嘉玮
作者简介: 王亮(1962-),男,研究员,主要从事物探勘查和研究工作。Email: wangliang62@163.com
引用本文:   
王亮, 胡从亮, 张嘉玮, 陈国勇, 张美雪, 杨武, 张应文. 贵州区域地热成因探讨[J]. 物探与化探, 2022, 46(2): 304-315.
WANG Liang, HU Cong-Liang, ZHANG Jia-Wei, CHEN Guo-Yong, ZHANG Mei-Xue, YANG Wu, ZHANG Ying-Wen. Exploration of the genesis of regional geothermal resources in Guizhou Province. Geophysical and Geochemical Exploration, 2022, 46(2): 304-315.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1228      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/304
Fig.1  贵州地热资源分布[9]
1—裂隙型带状层状复合型热储层分区;2—裂隙型带状热储层分区;3—岩溶型层状热储层分区;4—尚待查明区;5—主要断裂;6—25~40℃温泉;7—40~60℃温泉;8—60~90℃温泉;9—25~40℃地热井;10—40~60℃地热井;11—60~90℃地热井;12—90~150℃地热井
Fig.2  贵州活动性断裂与地热分布关联[2,10]
1—天然地热点;2—地热井;3—推测的深部Ⅰ级断裂;4—推测的深部Ⅱ级断裂;5—活动性断裂;6—地热具有的成群成带特征区
Fig.4  贵州遵义北郊SZK1地热井某测段测温曲线及综合异常[24]
Fig.3  贵州推测的花岗岩体及花岗岩基与地热分布关联 [ 2,1315 ]
1—推测的花岗岩体;2—推测的花岗岩基;3—天然地热点;4—地热井;5—地热具有的成群成带特征区;6—推测的深部Ⅰ级断裂;7—推测的深部Ⅱ级断裂
[1] 杨荣康, 罗维, 裴永炜, 等. 贵州省水热型地热资源分布及流体水化学特征[J]. 中国地质调查, 2018, 5(2):38-44.
[1] Yang R K, Luo W, Pei Y W, et al. Distribution and fluids hydrochemistry characteristics of hydrothermal geothermal resources in Guizhou Province[J]. Geological Surver of China, 2018, 5(2): 38-44.
[2] 卢定彪, 戴传固, 谯文浪, 等. 贵州省活动构造特征及地壳稳定性评价[M]. 北京: 地质出版社, 2011.
[2] Lu D B, Dai C G, Qiao W L, et al. The evaluation about active tectonic characteristics and crustal stability in Guizhou Province[M]. Beijing: Geological Publishing House, 2011.
[3] 韩至钧, 金占省. 贵州省水文地质志[M]. 北京: 地震出版社, 1996.
[3] Han Z J, Jin Z S. Hydrogeology of Guizhou Province[M]. Beijing: Earthquake Publishing House, 1996.
[4] 王砚耕. 贵州区域构造矿田构造学术讨论会论文集——贵州构造基本格架及其特征[M]. 贵阳: 贵州科技出版社, 1992.
[4] Wang Y G. Guizhou regional tectonic structure of academic discussion of the causes of proceedings—The tectonics framework in Guizhou province and its Characteristics[M]. Guiyang: Guizhou Science and Technology Press, 1992.
[5] 贵州省地质局. 贵州省区域地质志[M]. 北京: 地质出版社, 1987.
[5] Guizhou Bureau of Geology and Mineral Resources. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House, 1987.
[6] 戴传固, 张慧, 王敏, 等. 江南造山带西南段地质构造特征及其演化[M]. 北京: 地质出版社, 2010.
[6] Dai C G, Zhang H, Wang M, et al. Geological characteristics and tectonic evolution of the southwestern segment of the Jiangnan orogen[M]. Beijing: Geological Publishing House, 2010.
[7] 杨胜元, 张建江, 赵国宣, 等. 贵州环境地质[M]. 贵阳: 贵州科技出版社, 2008.
[7] Yang S Y, Zhang J J, Zhao G X, et al. Environmental geology of Guizhou province[M]. Guiyang: Guizhou Science and Technology Press, 2008.
[8] 刘开坤, 王国坤, 余未来, 等. 贵州铀矿资源特征及找矿潜力分析[J]. 矿产勘查, 2016, 7(5):774-780.
[8] Liu K K, Wang G K, Yu W L, et al. Characteristics of uranium resources and analysis of prospecting potential in Guizhou[J]. Mineral Exploration, 2016, 7(5): 774-780.
[9] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4):449-459.
[9] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459.
[10] 王亮, 胡从亮, 张嘉玮, 等. 贵州深部四级断裂构造特征及与重要矿产的关系[J]. 地质力学学报, 2019, 25(1):36-51.
[10] Wang L, Hu C L, Zhang J W, et al. Correlation between the structural characteristics of the deep four-level fault and the important mineral deposits in Guizhou province[J]. Journal of Geomechanics, 2019, 25(1): 36-51.
[11] 王卫平, 吴成平, 马勋表. 贵州东部地区航磁调查发现多处隐伏岩体和重要找矿信息[J]. 中国地质调查成果快讯, 2017(59):20-225.
[11] Wang W P, Wu C P, Ma X B. Many concealed rock bodies and important prospecting information found in aeromagnetic survey in eastern Guizhou[J]. Brief of Achievements Released by China Geological Survey, 2017(59):20-225.
[12] 王卫平, 吴成平, 马勋表. 黔东地区航磁场特征与岩性构造填图[J]. 中国地质调查, 2018, 5(1):37-43.
[12] Wang W P, Wu C P, Ma X B. Aeromagnetic field feature and lithologic mapping in eastern Guizhou[J]. Geological Surver of China, 2018, 5(1): 37-43.
[13] 王亮, 张嘉玮, 陈国勇, 等. 贵州中酸性隐伏岩体圈定与找矿意义[J]. 地质与勘探, 2020, 56(2):387-402.
[13] Wang L, Zhang J W, Chen G Y, et al. Delineation of concealed intermediate-acidic pluton and significance of mineral prospecting in Guizhou province[J]. Geology and Exploration, 2020, 56(2): 387-402.
[14] 孙文珂, 黄崇轲, 丁鹏飞. 应用物探资料研究重点成矿区带的区域构造和成矿构造文集——中国东南大陆深部地质构造与区内若干重要矿田的关联[M]. 北京: 地质出版社, 2001.
[14] Sun W K, Huang C K, Ding P F. Application of geophysical data to study the regional tectonic and ore-forming tectonic collections of key metallogenic belts—Association of deep geological structures in southeastern China with several important ore fields in the region[M]. Beijing: Geological Publishing House, 2001.
[15] 王亮, 杨建辉, 范玉梅. 贵州隐伏中酸性岩体与铁矿和找矿前景[J]. 贵州地质, 2015, 32(2):271-276.
[15] Wang L, Yang J H, Fan Y M. Concealed intermediate acidic rock mass and iron mineralization in Guizhou and exploration prospect[J]. Guizhou Geology, 2015, 32(2): 271-276.
[16] 李超文, 彭头平. 湖南地热资源分布及远景区划[J]. 湖南地质, 2001, 20(4):272-276.
[16] Li C W, Pen T P. Resources distribution of ground warm-water in Hunan province and its perspective[J]. Hunan Geology, 2001, 20(4): 272-276.
[17] 彭头平, 李超文, 彭冰霞. 湖南地热资源的构造制约与勘查标志[J]. 湖南地质, 2002, 21(1):56-60.
[17] Pen T P, Li C W, Peng B X. Tectonic constraints on the underground thermal-water resources in hunan province and its perstective for exploration[J]. Hunan Geology, 2002, 21(1): 56-60.
[18] 倪高倩, 韦玉婷, 屈泽伟, 等. 四川省地热资源分布及特征简析[J]. 四川地质学报, 2016, 36(2):239-242.
[18] Ni G Q, Wei Y T, Qu Z W, et al. Geothermal resource in Sichuan[J]. Acta Geologica Sichuan, 2016, 36(2): 239-242.
[19] 罗敏, 任蕊, 袁伟. 四川地热资源类型、分布及成因模式析[J]. 四川地质学报, 2016, 36(1):47-50.
[19] Luo M, Ren R, Yuan W. Type,distribution and genesis of geothermal resource in Sichuan[J]. Acta Geologica Sichuan, 2016, 36(1): 47-50.
[20] 殷瑛, 王明珠, 何绕生. 云南地热资源及其开发前景[J]. 云南地质, 2006, 25(1):70-75.
[20] Yin Y, Wang M Z, He R S. The geothermal resources of yunnan and their development potentiality[J]. Yunnan Geology, 2006, 25(1): 70-75.
[21] 吴六灵, 曷文胜, 蔡克勤, 等. 广西地热水控矿因素及找矿方向初探[J]. 矿产与地质, 2004, 18(2):103-108.
[21] Wu L L, Gen W S, Cai K Q. Research of controlling factors and prospecting direction of geothermal water in Guangxi[J]. Mineral Resources and Geology, 2004, 18(2): 103-108.
[22] 袁来, 郑懋荣. 黔东梵净山桃树林花岗岩型铀矿床特征及成矿条件[J]. 低碳世界, 2015(3):124-126.
[22] Yuan L, Zheng M R. Characteristics and metallogenic conditions of Taoshulin granite-type uranium deposit in Fanjingshan, Eastern Guizhou[J]. Low Carbon World, 2015(3): 124-126.
[23] 王亮, 张嘉玮, 黄启霖, 等. 区域重磁圈定贵州基性—超基性隐伏岩体及地质意义[J]. 贵州地质, 2020, 37(2):154-164.
[23] Wang L, Zhang J W, Huang Q L, et al. Basic-ultrabasic hidden rock delineation of Guizhou by regional gravity aeromagnetic survey data and its geological significance[J]. Guizhou Geology, 2020, 37(2): 154-164.
[24] 贵州省地质矿产勘查开发局. 遵义北郊地热田地质模型研究结题报告[R]. 2014.
[24] Guizhou Provincial Bureau of Geology and Mineral Exploration and Development. Report on geological model research of geothermal field in northern suburb of Zunyi[R]. 2014.
[25] 汪磊, 张海. 贵州西部威水背斜地热赋存规律及靶区预测研究[J]. 中国地质调查, 2016, 3(6):26-31.
[25] Wang L, Zhang H. Geothermal occurrence regularity and target area prediction in Weishui Anticlinein, western Guizhou Province[J]. Geological Surver of China, 2016, 3(6): 26-31.
[26] 许绳铭. 对漳州、东山幅地质构造的再认识[C]∥地矿部西安区域重力调查中心. 区域重力调查资料深化解释推断交流会论文集, 1989.
[26] Xu S M. A new understanding of the geological structure of Zhangzhou and Dongshan [C]∥Xi’an Center of Method and Technology for Regional Gravity Survey. Proceedings of the Symposium on the further interpretation and inference of regional gravity survey data, 1989.
[27] 许绳铭. 利用重磁资料解释福建南部深部地质的几个实例[C]∥地矿部西安区域重力调查中心. 区域重力调查资料深化解释推断交流会论文集, 1985.
[27] Xu S M. Some examples of deep geological interpretation in southern Fujian using gravity and magnetic data [C]∥Xi’an Center of Method and Technology for Regional Gravity Survey. Proceedings of the Symposium on the further interpretation and inference of regional gravity survey data, 1985.
[1] 韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证[J]. 物探与化探, 2023, 47(1): 65-72.
[2] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[3] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[4] 石晓今, 李嫄嫄, 黄贤龙. 天津滨海新区深部地热流体水文地球化学特征[J]. 物探与化探, 2022, 46(2): 316-322.
[5] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[6] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[7] 游军, 张小明, 罗乾周, 史朝洋, 杨运军, 陈剑祥, 袁攀. 略阳白雀寺杂岩体以西隐伏深大断裂的推断依据及其意义[J]. 物探与化探, 2021, 45(3): 645-652.
[8] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[9] 夏暖, 鹿子林, 付俊东, 张建民, 王冬雷, 郑旭. 薄覆盖层隐伏断裂的纵横波联合探测[J]. 物探与化探, 2021, 45(2): 387-393.
[10] 刘现锋, 姜文龙, 王旭明, 马若龙, 胡文哲. 复杂地质条件下的面波探测技术应用研究[J]. 物探与化探, 2020, 44(2): 449-455.
[11] 马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用[J]. 物探与化探, 2019, 43(5): 1038-1045.
[12] 赵宝峰, 汪启年, 官大维. 带状热储地热田的地球物理场特征——以湖南省热水圩地热田为例[J]. 物探与化探, 2019, 43(4): 734-740.
[13] 牛俊强, 范威, 郭昆. 武汉城市圈岩溶热储水化学特征及水—岩作用研究[J]. 物探与化探, 2019, 43(4): 741-748.
[14] 唐世新, 李建军, 马生明, 胡树起. 运积物覆盖区地球化学找矿方法——土壤热磁组分测量[J]. 物探与化探, 2019, 43(4): 749-757.
[15] 丰赟, 沙椿. 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018, 42(2): 392-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com