Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1578-1587    DOI: 10.11720/wtyht.2021.0284
  《重、磁方法理论及应用研究》专栏 本期目录 | 过刊浏览 | 高级检索 |
iTilt-Euler法在重力数据处理及断裂解释中的应用
陈青1,2(), 孙帅1, 丁成艺1, 黄小宇1, 陈浩3, 申鹏1, 罗港1, 魏耀聪1
1.重庆科技学院 石油与天然气工程学院,重庆 401331
2.复杂油气田勘探开发重庆市重点实验室,重庆 401331
3.重庆市二零八地质环境工程勘查设计院有限公司,重庆 400700
Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation
CHEN Qing1,2(), SUN Shuai1, DING Cheng-Yi1, HUANG Xiao-Yu1, CHEN Hao3, SHEN Peng1, LUO Gang1, WEI Yao-Cong1
1. Department of Earth Science, School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2. Chongqing Key Laboratory of Complex Oil and Gas Exploration and Development, Chongqing 401331, China
3. Chongqing 208 Geoenvironmental Engineering Survey and Design Institute Co., Ltd., Chongqing 400700, China
全文: PDF(4071 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为改善欧拉反演结果的收敛性,本文采用不依赖于构造指数的改进Tilt-Euler(iTilt-Euler)进行计算,并利用水平总梯度倾斜角峰值(TAHG)约束法约束反演数据,优化计算结果。模型试算结果表明,采用TAHG法约束的iTilt-Euler反演结果的收敛性得到了有效提高,且为深源地质体的位置和深度提供了更多信息。在肯尼亚ANZA盆地某区块重力数据处理中的应用表明,TAHG法约束下的iTilt-Euler反演解连续性较好,主要呈NW向,其次是NE向,且NW向展布的解延伸长、深度大,反映为控制区内构造单元边界的基底断裂,被NE向展布的盖层断裂所切割。此外,研究区东南部发育一条NNE向的深断裂,切割了NW向及NE向断裂,推测其可能控制了区域构造单元的东南边界。应用结果表明,iTilt-Euler法和TAHG法可为断裂解释提供可靠的研究手段,具有较好的实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈青
孙帅
丁成艺
黄小宇
陈浩
申鹏
罗港
魏耀聪
关键词 欧拉反褶积重力异常倾斜角断裂系统    
Abstract

In order to improve the convergence and stability of Euler inverted results, the iTilt-Euler method, which do not depend on the structure index, is used for the calculation. Furthermore, the data points are constrained by the peak values of tilt angle of the total horizontal derivative (TAHG) to optimize the solutions. The method has been demonstrated with synthetic and real data. For synthetic data, the convergence of iTilt-Euler inversion results constrained by the TAHG method is improved effectively to detect the fault structures with deeper depth. Application to gravity data for the ANZA basin in Kenya shows that the iTilt-Euler inversion results constrained by peak values of TAHG have good continuity. The results distribute generally along NW direction, followed by NE direction, and these characteristics are consistent with the identifying features of fault in the second-order vertical derivative and total horizontal derivative anomaly maps. Furthermore, the inversion depth results show that the solutions along NW direction are extend to large scale and with higher values, which is reflected as a basement fault that controls the boundary of the main tectonic units in the study area and usually cut by the superficial faults with NE extension. It is worth noting that a large deep fault with NNE extension is developed in the southeast of the study area, which cuts the north-west direction and the north-east direction fault. It is speculated that it may control the southeast boundary of the regional tectonic unit. We can conclude that the iTilt-Euler deconvolution combined with the peak constraint method can provide a reliable method for fault system interpretation, and has good practicability.

Key wordsEuler deconvolution    gravity anomaly    Tilt angle    fault system
收稿日期: 2021-05-18      出版日期: 2021-12-21
ZTFLH:  P631  
基金资助:国家自然科学基金项目(41702210);重庆市基础科学与前沿技术研究专项(cstc2017jcyjAX0370);重庆市教委科学技术研究项目(KJQN201901535);重庆科技学院博士教授科研启动基金项目(CK2016B12)
作者简介: 陈青(1984-),女,博士,2015年毕业于西北大学,主要研究方向为构造地球物理。Email: chenqing0144@126.com
引用本文:   
陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
CHEN Qing, SUN Shuai, DING Cheng-Yi, HUANG Xiao-Yu, CHEN Hao, SHEN Peng, LUO Gang, WEI Yao-Cong. Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation. Geophysical and Geochemical Exploration, 2021, 45(6): 1578-1587.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0284      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1578
Fig.1  组合模型重力异常正演(黑色虚线为模型体位置)
a—组合模型三维立体图;b—组合模型重力异常;c—添加2%高斯噪声的组合模型重力异常
模型体 中心点坐标/km 长度/km 宽度/km 顶面埋深/km 厚度/km 旋转角度/(°)
1 (-18,-34) 52 20 1 2 -45
2 (-18,34) 52 20 2 2 45
3 (36,0) 120 16 3 3 0
Table1  组合模型参数
Fig.2  不加噪组合模型欧拉反演结果
a—倾斜角;b—Tilt-Euler法反演结果;c—改进倾斜角;d—iTilt-Euler法反演结果;e—水平总梯度倾斜角;f—水平总梯度倾斜角峰值约束下的iTilt-Euler法反演结果
Fig.3  加2%高斯噪声的组合模型欧拉反演结果
a—倾斜角;b—Tilt-Euler法反演结果;c—改进倾斜角;d—iTilt-Euler法反演结果;e—水平总梯度倾斜角;f—水平总梯度倾斜角峰值约束下的iTilt-Euler法反演结果
Fig.4  研究区布格重力异常
Fig.5  研究区重力异常欧拉反演结果
a—垂向二阶导数;b—水平总梯度;c—常规欧拉反褶积反演结果(N=0.5);d—Tilt-Euler反演结果;e—iTilt-Euler反演结果;f—约束下的iTilt-Euler法反演结果
Fig.6  研究区断裂展布
[1] Thompson D T. EULDPH—A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.
doi: 10.1190/1.1441278
[2] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.
doi: 10.1190/1.1442774
[3] 姚长利, 管志宁, 吴其斌, 等. 欧拉反演方法分析及实用技术改进[J]. 物探与化探, 2004, 28(2):150-155.
[3] Yao C L, Guan Z N, Wu Q B, et al. An analysis of Euler deconvolution and its improvement[J]. Geophysical and Geochemical Exploration, 2004, 28(2):150-155.
[4] Hsu S K. Imaging magnetic sources using Euler’s equation[J]. Geophysical Prospecting, 2002, 50:15-25.
doi: 10.1046/j.1365-2478.2001.00282.x
[5] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.
doi: 10.1190/1.1635049
[6] Salem A, Smith R. Generalized magnetic tilt-Euler deconvolution[C]// SEG Expanded Abstracts, 2007: 790-794.
[7] 范美宁, 江裕标, 张景仙. 不同数据用于欧拉方程的模型计算[J]. 地球物理学进展, 2008, 23(4):1250-1253.
[7] Fan M N, Jiang Y B, Zhang J X. Model calculation of Euler’s equation for different data types[J]. Progress in Geophysics, 2008, 23(4):1250-1253.
[8] Ma G Q. The application of extended Euler deconvolution method in the interpretation of potential field data[J]. Journal of Applied Geophysics, 2014, 107(8):188-194.
doi: 10.1016/j.jappgeo.2014.06.002
[9] Neil C, Whaler K A, Reid A B. Extensions to Euler’s method for three-dimensional potential field interpretation[C]// 53rd EAEG meeting, Florence, Expanded Abstracts, 1991:416-417.
[10] Fairhead J D, Bennett K J, Gordon D R H, et al. Euler: beyond the “Black Box”[C]// SEG Expanded Abstracts, 1994: 422-424.
[11] Keating P B. Weighted Euler deconvolution of gravity data[J]. Geophysics, 1998, 63(5):1595-1603.
doi: 10.1190/1.1444456
[12] 范美宁, 孙运生, 田庆君. 关于欧拉反褶积方法计算中的一点改进[J]. 物探化探计算技术, 2005, 27(2):171-174.
[12] Fan M N, Sun Y S, Tian Q J. An improvement on calculation of Euler deconvolution[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(2):171-174.
[13] Davis K, Li Y. Enhancement of depth estimation techniques with amplitude analysis[C]// SEG Expanded Abstracts, 2009: 908-912.
[14] 周勇, 曹书锦, 侯萍萍, 等. 重力场欧拉反褶积最优解提取[J]. 物探化探计算技术, 2017, 39(5):598-604.
[14] Zhou Y, Cao S J, Hou P P, et al. Extraction optimal solution of Euler deconvolution for gravity data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(5):598-604.
[15] Gerovska D, Araúzo-Bravo M J. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index[J]. Computers & Geosciences, 2003, 29(8):949-960.
doi: 10.1016/S0098-3004(03)00101-8
[16] Ugalde H, Morris B. Cluster analysis of Euler deconvolution solutions: New filtering techniques and actual link to geological structure[C]// SEG Expanded Abstracts, 2008:794-798.
[17] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J]. Geophysics, 2008, 73(1):L1-L10.
doi: 10.1190/1.2799992
[18] Beiki M. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Sele area, Sweden[J]. Journal of Applied Geophysics, 2013, 90:82-91.
doi: 10.1016/j.jappgeo.2013.01.002
[19] Barbosa V C F, Silva J B C, Medeiros W E. Making Euler deconvolution applicable to small ground magnetic surveys[J]. Journal of Applied Geophysics, 2000, 43(1):55-68.
doi: 10.1016/S0926-9851(99)00047-6
[20] 郭志宏. 航磁及梯度数据正反演解释方法技术实用化改进及应用[D]. 北京:中国地质大学(北京), 2004.
[20] Guo Z H. The practical improvement of forward and inversion technique on aeromagnetic gradient data and its application[D]. Beijing:China University of Geoscience (Beijing), 2004.
[21] 鲁宝亮, 范美宁, 张原庆. 欧拉反褶积中构造指数的计算与优化选取[J]. 地球物理学进展, 2009, 24(3):1027-1031.
[21] Lu B L, Fan M N, Zhang Y Q. The calculation and optimization of structure index in Euler deconvolution[J]. Progress in Geophysics, 2009, 24(3):1027-1031.
[22] 曹书锦, 朱自强, 鲁光银. 基于自适应模糊聚类分析的重力张量欧拉反褶积解[J]. 中南大学学报:自然科学版, 2012, 43(3):1033-1039.
[22] Cao S J, Zhu Z Q, Lu G Y. Gravity tensor Euler Deconvolution solutions based on adaptive fuzzy cluster analysis[J]. Journal of Central South Unirersity:Science and Teclmology, 2012, 43(3):1033-1039.
[23] Miller H G, Singh V. Potential field tilt—a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32(2-3):213-217.
doi: 10.1016/0926-9851(94)90022-1
[24] 王想, 李桐林. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 2004, 19(3):625-630.
[24] Wang X, Li T L. Locating the boundaries of magnetic or gravity sources with Tdr and Tdr-Thdr methods[J]. Progress in Geophysics, 2004, 19(3):625-630.
[25] 王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010, 25(1):196-210.
[25] Wang W Y, Qiu Z Y, Yang Y, et al. Some advances in the edge recognition of potential field[J]. Progress in Geophysics, 2010, 25(1):196-210.
[26] 刘鹏飞, 刘天佑, 杨宇山, 等. Tilt梯度算法的改进与应用:以江苏韦岗铁矿为例[J]. 地球科学:中国地质大学学报, 2015, 40(12):2091-2102.
[26] Liu P F, Liu T Y, Yang Y S, et al. An improved tilt angle method and its application: A case of Weigang iron ore deposit, Jiangsu[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(12):2091-2102.
[27] Huang L, Zhang H L, Sekelania S, et al. An improved Tilt-Euler deconvolution and its application on a Fepolymetallic deposit[J]. Ore Geology Reviews, 2019, 114:103-114.
[28] Ferreira F J F, de Souza J, de B. e S. Bongiolo A, et al. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle[J]. Geophysics, 2013, 78(3):J33-J41.
doi: 10.1190/geo2011-0441.1
[29] Greene L C, Richards D R, Johnson R A. Crustal structure and tectonic evolution of the Anza rift, northern Kenya[J]. Tectonophysics, 1991, 197:203-211.
doi: 10.1016/0040-1951(91)90041-P
[30] Bosworth W, Morley C K. Structural and stratigraphic evolution of the Anza rift, Kenya[J]. Tectonophysics, 1994, 236:93-115.
doi: 10.1016/0040-1951(94)90171-6
[31] 西安石油大学. 肯尼亚ANZA盆地9、10A区块重磁震联合解释报告[R]. 2007.
[31] Xi'an Shiyou University. The research of integrated interpretation of gravity, aeromagnetics and seismic data of block 9 and 10A of ANZA basin in Kenya_Atlas contents[R]. 2007.
[1] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
[2] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[3] 杨婧, 郭良辉. 重力异常曲化平的改进插值—迭代法[J]. 物探与化探, 2022, 46(1): 123-129.
[4] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[5] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[6] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[7] 王正科, 卢琳, 刘花婷. 一种实测重力异常区域场的消除方法[J]. 物探与化探, 2021, 45(6): 1569-1577.
[8] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[9] 王学发, 王万银, 马杰, 杨敏, 梁建设, 邱春光, 王丁丁, 纪晓琳, 刘金兰. 基于重力资料的马达加斯加岛及邻区盆地构造单元分布特征[J]. 物探与化探, 2020, 44(4): 928-937.
[10] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
[11] 陈挺, 严迪, 杨剑, 廖国忠, 武斌, 冉中禹. 基于重力值标准差研究长宁6.0级地震活动性[J]. 物探与化探, 2020, 44(3): 480-488.
[12] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
[13] 朱晓刚, 袁炳强, 冯旭亮, 谷开拓, 张春灌, 李玉宏, 王亮, 王海萍, 郑鹏飞, 李祖鑫. 基于MT和重力资料的渭河盆地西部地区基底属性[J]. 物探与化探, 2020, 44(2): 254-261.
[14] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[15] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com