Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 557-562    DOI: 10.11720/wtyht.2022.1461
  《全域地球物理探测与智能感知》专栏 本期目录 | 过刊浏览 | 高级检索 |
页岩气水力压裂分布式微弱电场监测技术初探
吴雯1(), 王猛1,2(), 杨迪琨3, 陈默1, 任林彬1
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.中国地质大学(北京) 地质过程与矿产资源国家重点实验室,北京 100083
3.南方科技大学 地球与空间科学系,广东 深圳 518055
Preliminary exploration into the monitoring technology for distributed weak electric field during hydraulic fracturing for shale gas extraction
WU Wen1(), WANG Meng1,2(), YANG Di-Kun3, CHEN Mo1, REN Lin-Bin1
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083,China
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Beijing), Beijing 100083, China
3. Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen 518055,China
全文: PDF(2828 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

页岩气水力压裂过程中,在远区开展人工源电磁场激励或在自身地电场的激励下,压裂液的注入、返排、滞留和吸收等过程将引起电场的改变,在压裂区上方通过监测微弱电场变化的方法可以反映压裂信息随时间的变化情况。为了满足压裂现场实时监测的需要,本文基于分布式微弱电场节点采集设备开展了监测技术初探。该监测系统仅采集水平正交的两路电场信号,监测一定范围内实时变化的电场信息,并将初步处理后的数据以无线的方式传回数据中心。测试结果表明,该监测系统工作性能稳定、待机时间10天以上、密封性能好、适用于复杂的野外环境,可为未来获取压裂液运移成像提供重要的技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴雯
王猛
杨迪琨
陈默
任林彬
关键词 页岩气水力压裂电场采集微弱信号调理分布式节点采集实时监测    
Abstract

In the process of hydraulic fracturing for shale gas extraction, the injection, flowback, retention, and absorption of fracturing fluids will cause changes in electric fields in the case of the excitation by the electromagnetic field from an artificial source in a far area or the excitation by the geoelectric field. The time-dependent change in the information on fracturing can be reflected by monitoring the change in weak electric fields above the hydraulic fracturing area. To meet the needs of the real-time monitoring of the fracturing field, this study focuses on the preliminary study of the monitoring technology based on the nodal acquisition devices of distributed weak electric fields. The monitoring system only collects two horizontally orthogonal electric field signals, monitors the real-time information on the electric field within a certain range, and transmits the preliminarily processed data back to the data center in a wireless way. Test results show that the monitoring system has stable performance, a standby time of more than 10 days, and high sealing performance, and is applicable to complex field environments. Therefore, this monitoring system can provide important technical support for obtaining images of fracturing fluid migration in the future.

Key wordshydraulic fracturing of shale gas    electric field acquisition    weak signal conditioning    distributed node acquisition    real-time monitoring
收稿日期: 2021-08-20      修回日期: 2022-02-28      出版日期: 2022-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金面上项目“页岩气压裂液长电极电磁法高分辨率成像监测方法研究”(41974087)
通讯作者: 王猛
作者简介: 吴雯(1999-),女,从事地球物理仪器研发相关工作。Email: 2010200030@cugb.edu.cn
引用本文:   
吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
WU Wen, WANG Meng, YANG Di-Kun, CHEN Mo, REN Lin-Bin. Preliminary exploration into the monitoring technology for distributed weak electric field during hydraulic fracturing for shale gas extraction. Geophysical and Geochemical Exploration, 2022, 46(3): 557-562.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1461      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/557
Fig.1  压裂微弱电场监测示意
Fig.2  监测系统总体结构框
Fig.3  x方向电场信号调理电路示意
Fig.4  核心采集电路实物
Fig.5  机械封装正面(左)和背面(右)
Fig.6  程序框
Fig.7  上位机运行界面
Fig.8  实地测试示意
Fig.9  5月29日A仪器东西方向测试数据
[1] 朱维耀, 陈震, 宋智勇, 等. 中国页岩气开发理论与技术研究进展[J]. 工程科学学报, 2021, 43(10):1397-1412.
[1] Zhu W Y, Chen Z, Song Z Y, et al. Research progress in theories and technologies of shale gas development in China[J]. Chinese Journal of Engineering, 2021, 43(10): 1397-1412.
[2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):689-701.
[2] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[3] 王世谦. 页岩气资源开采现状,问题与前景[J]. 天然气工业, 2017, 37(6):115-130.
[3] Wang S Q. Shale gas exploitation:Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-130.
[4] 刘振武, 撒利明, 杨晓, 等. 页岩气勘探开发对地球物理技术的需求[J]. 石油地球物理勘探, 2011, 46(5):810-818.
[4] Liu Z W, Sa L M, Yang X, et al. Needs of geophysical technologies for shale gas exploration[J]. Oil Geophysical Prospecting, 2011, 46(5): 810-818.
[5] 张永华, 陈祥, 杨道庆, 等. 微地震监测技术在水平井压裂中的应用[J]. 物探与化探, 2013, 37(6):1080-1084.
[5] Zhang Y H, Chen X, Yang D Q, et al. The application of Micro-Seismic monitoring technology to the study of horizontal well fracturing[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1080-1084.
[6] 田建涛, 赵超峰, 张伟, 等. 水力压裂井中监测方法不对称压裂裂缝分析[J]. 石油物探, 2019, 58(4):341-345
[6] Tian J T, Zhao C F, Zhang W, et al. Analysis of asymmetric hydraulic fracture for borehole microseismic monitoring[J]. Geophysical Prospecting for Petroleum, 2019, 58(4): 341-345.
[7] 芮拥军. 地面微地震水力压裂监测可行性分析[J]. 物探与化探, 2015, 39(2):341-345.
[7] Rui Y J. Feasibility analysis of surface micro-seismic hydraulic fracturing monitoring[J]. Geophysical and Geochemical Exploration, 2015, 39(2): 341-345.
[8] 杨松霖, 袁博, 李帝铨. 高陡双复杂地区多种页岩气勘探方法效果对比[J]. 物探与化探, 2016, 40(5):941-946.
[8] Yang S L, Yuan B, Li D Q. An analysis of some different exploration methods in complex terrain area[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 941-946.
[9] 周印明, 刘雪军, 张春贺, 等. 快速识别页岩气“甜点”目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63.
[9] Zhou Y M, Liu X J, Zhang C H, et al. The TEEM technology for quick identification of “sweet spot” of shale gas and its applications[J]. Geophysical and Geochemical Exploration, 2015, 39(1): 60-63.
[10] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2):281-289.
[10] Tian W, Li X B, Wang B Z. The application of magnetotelluric sounding to shale gas exploration in Southeast Hunan Depression[J]. Geophysical and Geochemical Exploration, 2019, 43(2): 281-289.
[11] 凌帆, 朱裕振, 周明磊, 等. 广域电磁法在南华北盆地长山隆起页岩气资源潜力评价中的应用[J]. 物探与化探, 2017, 41(2):369-376.
[11] Ling F, Zhu Y Z, Zhou M L, et al. Shale gas potential assessment of Changsan uplift area in southern North China basin by using wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 369-376.
[12] 林君. 分布式无缆遥测地震勘探系统的设计与应用[M]. 北京: 科学出版社, 2016.
[12] Lin J. The design and application of distributed cableless telemetry seismic exploration system[M]. Beijing: Science Press, 2016.
[13] 刁瑞, 吴国忱, 尚新民, 等. 地面阵列式微地震监测关键技术研究[J]. 岩性油气藏, 2017, 29(1):104-109.
[13] Diao R, Wu G C, Shang X M, et al. Key techniques for surface array microseismic monitoring[J]. Horologic Reservoirs, 2017, 29(1): 104-109.
[14] 吴海成. 中国物探仪器发展博览——地球物理学会60年发展之见证[J]. 地球物理学进展, 2007, 22(4):1338-1343.
[14] Wu H C. The progress of the instruments of exploration geophysics in China——An overview of the past sixty years of CGS[J]. Progress In Geophysics, 2007, 22(4): 1338-1343.
[15] 王永兵, 何继善. WSJ-4 多功能高精度数字化伪随机信号接收系统及应用[J]. 物探与化探, 2014, 38(5):1012-1017.
[15] Wang Y B, He J S. Development and a-pplication of the WSJ-4 multifunction digital IP instrument receiving system based on pseudo-random signa[J]. Geophysical and Geochemical Exploration, 2014, 38(5): 1012-1017.
[16] 张文秀, 林君, 刘立超, 等. 分布式电磁探测宽频数据采集系统设计与实现[J]. 吉林大学学报:工学版, 2012, 42(6):1426-1431.
[16] Zhang W X, Lin J, Liu L C, et al. Design and implementation of broadband data acquisition system for distributed electromagnetic exploration[J]. Journal of Jilin University:Engineering and Technology Edition, 2012, 42(6): 1426-1431.
[17] 黄大年, 于平, 底青云. 地球深部探测关键技术装备研发现状及趋势[J]. 吉林大学学报:地球科学版, 2012, 42(5):1485-1496.
[17] Huang D N, Yu P, Di Q Y. Development of key instruments and technologies of deep exploration today and tomorrow[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(5): 1485-1496.
[18] 林品荣, 郭鹏, 石福升, 等. 大深度多功能电磁探测技术研究[J]. 地球学报, 2010, 31(2):149-154.
[18] Lin P R, Guo P, Shi F S, et al. A study of the techniques for large-depth and multi-functional electromagnetic survey[J]. Acta Geoscientia Sinica, 2010, 31(2): 149-154.
[19] 陈凯, 金胜, 魏文博, 等. 坑(井)—地多参数电磁接收系统[J]. 地球物理学报, 2019, 62(10):3803-3818.
[19] Chen K, Jin S, Wei W B, et al. Surface tunnel borehole multi-parameter EM receiver[J]. Chinese Journal of Geophysics, 2019, 62(10): 3803-3818.
[20] 高雅, 底青云, 付长民, 等. 巷道CSAMT法的目标体分辨能力研究[J]. 地球物理学报, 2019, 62(9):3591-3600.
[20] Gao Y, Di Q Y, Fu C M, et al. Research on resolving ability of deep subsurface targets from mine roadway using CSAMT method[J]. Chinese Journal of Geophysics, 2019, 62(9): 3591-3600.
[21] 刘长胜, 马金发, 朱文杰, 等. 深井电场测量不极化电极特性研究[J]. 物探与化探, 2020, 44(4):816-819.
[21] Liu C S, Ma J F, Zhu W J, et al. A study of the characteristics of non-polarized electrode in deep well electric field measurement[J]. Geophysical and Geo-chemical Exploration, 2020, 44(4): 816-819.
[22] 陆阳泉, 梁子斌, 刘建毅. 固体不极化电极的研制及其应用效果[J]. 物探与化探, 1999, 23(1):65-66.
[22] Lu Y Q, Liang Z B, Liu J Y. Development and application of solid non-polarized electrode[J]. Geophysical and Geochemical Exploration, 1999, 23(1): 65-66.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 常小鹏, 陈亮, 张翔, 张凌霄, 朱樟柳, 乔衍溢. 基于不同规范的重力仪双程往返零漂率计算分析[J]. 物探与化探, 2023, 47(5): 1307-1315.
[4] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[5] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[6] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[7] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[8] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[9] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[10] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[11] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[12] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[13] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[14] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[15] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com