Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1226-1235    DOI: 10.11720/wtyht.2023.0086
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
不同骨料混凝土模型中瑞利波传播特性研究
项诸宝1,2(), 张大洲1,3(), 朱德兵1,3, 李明智4, 熊章强3
1.高速铁路建造技术国家工程研究中心,湖南 长沙 410075
2.中国中铁股份有限公司,北京 100039
3.中南大学 地球科学与信息物理学院,湖南 长沙 410083
4.广西交通设计集团有限公司,广西 南宁 530029
Exploring the Rayleigh wave propagation characteristics in different aggregate concrete models
XIANG Zhu-Bao1,2(), ZHANG Da-Zhou1,3(), ZHU De-Bing1,3, LI Ming-Zhi4, XIONG Zhang-Qiang3
1. National Engineering Research Center of High-speed Railway Construction Technology, Changsha 410075, China
2. China Railway Group Limited, Beijing 100039, China
3. Central South University, School of Geosciences and Info-physics, Changsha 410083, China
4. Guangxi Communications Design Group Co., Ltd. Nanning 530029, China
全文: PDF(1444 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为避免用瑞利波检测混凝土时骨料对探测目标体的干扰,保证混凝土质量检测的可靠性,需要区分骨料异常信号和目标体异常信号,为此,对含骨料混凝土中的瑞利波传播特性展开了研究。通过建立细观结构的骨料随机模型,采用高阶交错网格有限差分法,研究骨料的随机性、形状、粒径和含量对瑞利波波场及频散曲线的影响,得到不同骨料参数下的瑞利波散射情况、能量衰减、畸变特性以及频散曲线特征。通过不同骨料混凝土模型正演数据,定量地了解到骨料引起的瑞利波波场与频散曲线的异常大小与影响范围。研究结果表明:骨料的随机性与含量会对直达瑞利波的衰减产生影响,骨料形状的差异对瑞利波波场的影响很小,骨料粒径的变化对波场影响较大,当粒径超过1/2主频波长时瑞利波会产生较强的散射,波形会产生畸变;对频散曲线而言,骨料的随机性、形状、粒径和含量的变化均不会引起频散曲线异常,因此,使用瑞利波法进行混凝土检测时,采用频散曲线对数据进行分析,可避免骨料对目标体的干扰。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
项诸宝
张大洲
朱德兵
李明智
熊章强
关键词 高频瑞利波混凝土质量检测骨料性质频散曲线    
Abstract

To avoid aggregate interference on the detection target in concrete quality detection by Rayleigh waves, the abnormal signals from the aggregate and the target should be distinguished for high detection reliability. Hence, this study explored the propagation characteristics of Rayleigh waves in aggregate concrete. By building the mesostructural random aggregate models and employing the high-order staggered-grid finite difference scheme, this study examined the effects of the randomness, shape, size, and content of aggregate on the Rayleigh wave field and dispersion curves, thus obtaining the Rayleigh wave scattering, energy attenuation, distortion, and dispersion curve characteristics under different aggregate parameters. Based on the forward modeling data of different aggregate concrete models, this study quantitatively analyzed the sizes and influence ranges of aggregate-induced anomalies of the Rayleigh wave field and dispersion curves. The results are as follows. The randomness and content of aggregate could affect the energy attenuation of direct Rayleigh waves. The Rayleigh wave field was slightly influenced by the aggregate shape but significantly impacted by the aggregate size. When the aggregate size exceeded half of the dominant wavelength, Rayleigh waves would produce strong scattering, distorting its waveforms. In contrast, these aggregate parameters caused no anomalies in the dispersion curves. Therefore, data analysis using dispersion curves can avoid aggregate interference on the target in concrete quality detection by Rayleigh waves.

Key wordshigh-frequency Rayleigh wave    concrete    quality detection    aggregate property    dispersion curve
收稿日期: 2023-03-06      修回日期: 2023-04-25      出版日期: 2023-10-20
ZTFLH:  TU43  
  P631.4  
基金资助:中国中铁股份有限公司科技研究开发计划项目(2020-专项-02);湖南省自然科学基金项目(S2023JJMSXM2207)
通讯作者: 张大洲
作者简介: 项诸宝(1993-),男,硕士,工程师,主要从事工程物探技术及装备相关的研究工作。Email:zhubaoxiang2022@163.com
引用本文:   
项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
XIANG Zhu-Bao, ZHANG Da-Zhou, ZHU De-Bing, LI Ming-Zhi, XIONG Zhang-Qiang. Exploring the Rayleigh wave propagation characteristics in different aggregate concrete models. Geophysical and Geochemical Exploration, 2023, 47(5): 1226-1235.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0086      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1226
Fig.1  三种形状的骨料混凝土数值模型
项目 vp/(m·s-1) vs/(m·s-1) ρ/(kg·m-3)
水泥砂浆 3950 2250 2050
骨料 4400 2500 2610
Table 1  混凝土模型中的物质材料参数
Fig.2  随机模型的地震记录
随机
模型
散射瑞利波 直达瑞利波
最大振幅/% 总振幅/% 衰减量/% 形变量/%
模型1 8.0 13.2 9.9 4.4
模型2 5.5 10.9 12.2 3.5
模型3 8.4 14.4 10.7 2.4
模型4 8.6 14.9 5.6 6.4
误差/% 3.1 4.0 6.6 4.0
Table 2  骨料随机性对波场的影响
Fig.3  不同随机模型的频散曲线
Fig.4  不同骨料形状的波形对比
骨料
形状
散射瑞利波 直达瑞利波
最大振幅/% 总振幅/% 衰减量/% 形变量/%
椭圆形 7.3 12.8 10.6 4.3
圆形 8.3 14.2 9.2 6.0
多边形 7.0 13.8 9.8 3.8
误差/% 1.3 1.4 1.4 2.2
Table 3  骨料形状对波场的影响
Fig.5  不同骨料形状的频散曲线
Fig.6  不同骨料粒径的波场记录
骨料粒
径/mm
散射瑞利波 直达瑞利波
最大振幅/% 总振幅/% 衰减量/% 形变量/%
12 6.0 10.5 9.2 4.1
24 7.3 12.2 10.9 3.4
50 9.4 16.8 7.9 6.2
75 14.2 29.4 9.2 14.7
误差/% 8.2 18.9 3.0 11.3
Table 4  骨料粒径对波场的影响
Fig.7  不同骨料粒径的频散曲线
Fig.8  骨料含量不同的模型波场记录
Pk 散射瑞利波 直达瑞利波
最大振幅/% 总振幅/% 衰减量/% 形变量/%
0.3 9.4 16.2 10.1 5.9
0.6 8.5 19.0 14.5 4.7
误差/% 0.9 2.8 4.4 1.2
Table 5  骨料含量对波场的影响
Fig.9  不同骨料含量的频散曲线
Fig.10  空洞规模变化引起的频散曲线异常对比
Fig.11  空洞深度变化引起的频散曲线
[1] 尚新想, 谢友均, 马昆林, 等. 基于应力波的混凝土抗压强度无损检测试验研究[J]. 铁道科学与工程学报, 2022, 19(8):2305-2312.
[1] Shang X X, Xie Y J, Ma K L, et al. Experimental study on nondestructive testing of concrete compressive strength based on stress wave[J]. Journal of Railway Science and Engineering, 2022, 19(8):2305-2312.
[2] 姜勇, 吴佳晔, 马永强, 等. 基于冲击弹性波的隧道衬砌混凝土强度检测技术研究和应用[J]. 铁道建筑, 2020, 60(6):1-5,11.
[2] Jiang Y, Wu J H, Ma Y Q, et al. Research and application of tunnel lining concrete strength detection technology based on shock elastic wave[J]. Railway Engineering, 2020, 60(6):1-5,11.
[3] 姚菲, 陆幸奇, 陈光宇. 基于冲击回波法的混凝土—围岩缺陷检测与信号处理研究[J]. 铁道科学与工程学报, 2021, 18(9):2316-2323.
[3] Yao F, Lu X Q, Chen G Y. Experimental and signal processing research on concrete-rock structural defects by impact-echo method[J]. Journal of Railway Science and Engineering, 2021, 18(9):2316-2323.
[4] 王庆彦, 王浩丞, 郁明理. 无损检测技术在混凝土性能检测中的应用[J]. 中国建材科技, 2022, 31(3):134-136.
[4] Wang Q Y, Wang H C, Yu M L. Application of nondestructive testing technology in concrete performance inspection[J]. China Building Materials Science & Technology, 2022, 31(3):134-136.
[5] Potapov A I, Shikhov A I, Dunaeva E N. Nondestructive quality testing of concrete and asphalt concrete pavements[J]. Journal of Physics:Conference Series, 2021, 1753(1):012053.
doi: 10.1088/1742-6596/1753/1/012053
[6] 杨道煌, 刘江平, 程飞, 等. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3):626-634.
[6] Yang D H, Liu J P, Cheng F, et al. The application of ultrasonic surface wave method to concrete strength testing[J]. Geophysical and Geochemical Exploration, 2020, 44(3) :626-634.
[7] 刘杨, 邵志伟, 张慧杰, 等. 钢管混凝土密实度超声波层析成像无损检测研究[J]. 工业建筑, 2021, 51(10):189-200.
[7] Liu Y, Shao Z W, Zhang H J, et al. Research on nondestructive testing of CFST by ultrasonic tomography[J]. Industrial Construction, 2021, 51(10):189-200.
[8] 李军伟, 徐飞, 王兵, 等. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报:工学版, 2021, 51(5):84-90.
[8] Li J W, Xu F, Wang B, et al. Influence of concrete aggregate particle size on acoustic emission detection[J]. Journal of Shandong University: Engineering Science, 2021, 51(5):84-90.
[9] 刘豪, 侯德鑫, 郑刚兵, 等. 基于热成像的钢管混凝土脱空检测技术研究[J]. 红外技术, 2021, 43(11):1119-1126.
[9] Liu H, Hou D X, Zheng G B, et al. Infrared thermography-based void detection technology for concrete-filled steel tubes[J]. Infrared Technology, 2021, 43(11):1119-1126.
[10] 杨相如. 瑞雷波在台涵背填筑质量控制中的应用[J]. 地下空间与工程学报, 2019, 15(2):505-512.
[10] Yang X R. Application of Rayleigh wave in the back filling of abutment in Quality Control[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2):505-512.
[11] 罗广衡, 潘坚文, 王进廷. 瑞利波法检测混凝土表面裂缝深度的影响因素研究[J]. 水利水电技术, 2021, 52(9):165-171.
[11] Luo G H, Pan J W, Wang J T. Study on influencing factors of detecting surface crack depth with Rayleigh wave detection method[J]. Water Resources and Hydropower Engineering, 2021, 52(9):165-171.
[12] 童凯, 周建庭, 张森华, 等. 基于激光激发瑞利波的混凝土表面裂缝检测[J]. 中国科技论文, 2022, 17(6):667-672.
[12] Tong K, Zhou J T, Zhang S H, et al. Crack detection of concrete surface based on laser excited Rayleigh wave[J]. China Science Paper, 2022, 17(6):667-672.
[13] 贺会团, 张献民, 赵维炳. 瞬态瑞雷面波检测碎石桩复合地基承载力研究[J]. 岩土工程学报, 2006, 28(8):1039-1043.
[13] He H T, Zhang X M, Zhao W B. Studies on capacity of gravel-piled compound detected by transient Rayleigh surface wave[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8):1039-1043.
[14] 袁士川, 宋先海, 张学强, 等. 黏弹性介质瑞雷波有限差分模拟与特性分析[J]. 地球物理学报, 2018, 61(4):1496-1507.
[14] Yuan S C, Song X H, Zhang X Q, et al. Finite-difference modeling and characteristics analysis of Rayleigh waves inviscoelastic media[J]. Chinese J Geophys, 2018, 61(4):1496-1507.
[15] Wu T T, Sun J H, Tong J H. On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar[J]. NDT&E International, 2000, 33(6):401-407.
doi: 10.1016/S0963-8695(00)00012-8
[16] Zerwer A, Polak M A, Santamarina J C. Detection of surface breaking cracks in concrete members using Rayleigh waves[J]. Journal of Environmental & Engineering Geophysics, 2012, 10(3):295-306.
[17] Aggelis D G, Shiotani T. Repair evaluation of concrete cracks using surface and through-transmission wave measurements[J]. Cement & Concrete Composites, 2007, 29(9):700-711.
[18] Kim G, In C W, Kim J Y, et al. Air-coupled detection of nonlinear Rayleigh surface waves in concrete:Application to microcracking detection[J]. NDT&E International, 2014, 67(8):64-70.
doi: 10.1016/j.ndteint.2014.07.004
[19] 练小聪. 混凝土介质中瑞雷面波传播特性的研究[D]. 长沙: 中南大学, 2014:43-46.
[19] Lian X C. The study of Rayleigh wave propagation characteristics of the concrete medium[D]. Changsha: Central South University, 2014:43-46.
[20] 董良国, 马在田, 曹景忠, 等. 一阶弹性波方程交错网格高阶差分解法[J]. 地球物理学报, 2000, 43(3):411-419.
[20] Dong L G, Ma Z T, Cao J Z, et al. A staggered-grid high order difference method of one-order elastic wave equation[J]. Chinese Journal of Geophysics, 2000, 43(3):411-419.
[21] Xu Y X, Xia J H, Miller R D. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach[J]. Geophysics, 2007, 72(5):147-153.
[22] 孙卫涛. 弹性波动方程的有限差分数值方法[M]. 北京: 清华大学出版社, 2009:56-59.
[22] Sun W T. Finite difference method for elastic wave equation[M]. Beijing: Tsinghua University Press, 2009:56-59.
[23] 熊章强, 张大洲, 秦臻, 等. 瑞雷波数值模拟中的边界条件及模拟实例分析[J]. 中南大学学报:自然科学版, 2008, 39(4):824-830.
[23] Xiong Z Q, Zhang D Z, Qin Z, et al. Boundary conditions and case analysis of numerical modeling of Rayleigh wave[J]. Journal of Central South University:Science and Technology, 2008, 39(4):824-830.
[24] 高政国, 刘光廷. 二维混凝土随机骨料模型研究[J]. 清华大学学报:自然科学版, 2004, 43(5):710-714.
[24] Gao Z G, Liu G T. Two-dimensional random aggregate structure for concrete[J]. Journal of Tsinghua University:Science and Tech-nology, 2004, 43(5):710-714.
[25] Walraven, Reinhardt. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subject to shear loading[J]. Heron, 1991, 26(1A):26-35.
[26] 张剑, 金南国, 金贤玉, 等. 混凝土多边形骨料分布的数值模拟方法[J]. 浙江大学学报:工学版, 2004, 38(5):581-585.
[26] Zhang J, Jin N G, Jin X Y, et al. Numerical simulation method for polygonal aggregate distribution in concrete[J]. Journal of Zhejiang University:Engineering Science, 2004, 38(5):581-585.
[27] Schubert F, Schechinger B. Numerical modeling of acoustic emission sources and wave propagation in concrete[J]. Journal of Nondestructive Testing:Germany, 2002, 7(9):1-8.
[28] Park C B, Miller R D, Xia J. Imaging dispersion curves of surface waves on multi-channel record[C]// SEG Expanded Abstracts, 1998, 17(1):1377-1380.
[1] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[2] 李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
[3] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[4] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[5] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[6] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[7] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[8] 杨道煌, 刘江平, 程飞, 庞凯旋. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3): 626-634.
[9] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[10] 杜鹏, 刘晓玲, 徐新战, 常镪, 付连红. 利用温度检测钻孔灌注桩混凝土拌合物面的研究[J]. 物探与化探, 2019, 43(3): 667-671.
[11] 赵翠荣, 胡通海, 郭福强. 一种用于混凝土结构探测的探地雷达天线阵列的设计[J]. 物探与化探, 2015, 39(3): 633-636,640.
[12] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[13] 王正成, 吴晔. 探地雷达隧道衬砌质量检测技术[J]. 物探与化探, 2013, 37(6): 1152-1156.
[14] 冯温雅, 施兴华, 费翔宇, 王元新. 结构扫描雷达对钢筋混凝土构件的三维切片成像[J]. 物探与化探, 2013, 37(4): 692-695,700.
[15] 裴少英, 涂善波, 高拴会. 蜗壳钢衬下混凝土脱空缺陷检测中中子无损探测法的应用[J]. 物探与化探, 2013, 37(2): 363-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com