Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1444-1453    DOI: 10.11720/wtyht.2022.1533
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法
石战战1(), 庞溯2,3, 王元君4, 池跃龙2,3, 周强2,3
1.乐山师范学院 人工智能学院,四川 乐山 614000
2.成都理工大学 工程技术学院,四川 乐山 614000
3.成都理工大学 地球物理学院,四川 成都 610059
4.西华师范大学 国土资源学院,四川 南充 637002
Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization
SHI Zhan-Zhan1(), PANG Su2,3, WANG Yuan-Jun4, CHI Yue-Long2,3, ZHOU Qiang2,3
1. School of Artificial Intelligence, Leshan Normal University, Leshan 614000, China
2. The Engineering and Technical College, Chengdu University of Technology, Leshan 614000, China
3. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
4. School of Land and Resources, China West Normal University, Nanchong 637002, China
全文: PDF(5923 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随机噪声压制是地震数据处理的关键环节,而时频稀疏低秩近似算法逐道处理地震数据过程中无法利用信号的道间相干性。为此,将时频稀疏低秩近似与f-x域去噪结合,提出一种f-x域时频非凸正则化低秩矩阵近似算法。该算法对f-x域中每一单频分量作时频分解后,再对时频系数矩阵作低秩矩阵近似计算,能够利用信号和噪声的时频谱差异实现非平稳信号去噪处理。与共炮点道集和共中心点道集相比,共偏移距道集具有平缓甚至接近水平的同相轴结构,基本满足f-x域去噪的线性同相轴假设前提,建议将所提算法应用于共偏移距道集去噪处理。通过数值模拟和实际地震数据试算,证明本文方法能够有效压制随机噪声,同时保持有效信号不被损害。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石战战
庞溯
王元君
池跃龙
周强
关键词 f-x时频域低秩矩阵近似共偏移距道集随机噪声    
Abstract

Random noise attenuation played an important role in the seismic data processing. The low-rank estimation of the seismic signal in the time-frequency domain is essentially a trace-by-trace process, which cannot exploit the channel-to-channel coherence of the signal. We propose a novel random noise attenuation based on f-x low-rank matrix approximation with nonconvex regularization. Firstly, the noisy seismic data is transformed into the f-x domain by Fourier transform. Then, the time-frequency method is employed to decompose each discrete frequency slice. Finally, we estimate the sparse low-rank matrix from the obtained noisy matrix. This method enables the denoising of non-stationary signals by exploiting the spectral differences between signal and noise. Compared with the common shot and mid-point gathers, the common offset gather is characterized by flat events, which basically satisfies the assumption of linear events for f-x domain denoising, and it is suggested that the proposed algorithm should be applied to the common offset gather. Synthetic and real data sets demonstrate the performance of our proposed method in random noise suppression and preserving more useful energy.

Key wordsf-x domain    time-frequency    low-rank matrix approximation    common offset gather    random noise
收稿日期: 2021-09-24      修回日期: 2021-11-17      出版日期: 2022-12-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项课题(2016ZX05026-001);四川省教育厅项目(16ZB0410);川西南空间效应探测与应用四川省高等学校重点实验室开放基金(YBXM202102001);四川旅游发展研究中心课题(LY22-20)
作者简介: 石战战(1986-),男,陕西户县人,讲师,工学博士,主要从事地震数据处理方面的科研和教学工作。Email:shizhanzhan@lsnu.edu.cn
引用本文:   
石战战, 庞溯, 王元君, 池跃龙, 周强. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6): 1444-1453.
SHI Zhan-Zhan, PANG Su, WANG Yuan-Jun, CHI Yue-Long, ZHOU Qiang. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization. Geophysical and Geochemical Exploration, 2022, 46(6): 1444-1453.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1533      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1444
Fig.1  核范数正则化与非凸正则化对比分析
Fig.2  地质模型及其正演数据
Fig.3  共偏移距道集去噪算法对比
Fig.4  单道对比3种共偏移距道集去噪算法
Fig.5  共偏移距道集和共炮点道集处理结果对比
Fig.6  实际地震数据
Fig.7  实际数据共偏移距道集去噪算法对比
Fig.8  实际数据共偏移距道集和共炮点道集处理结果对比
[1] Yilmaz Öz. Seismic data analysis[J]. Society of Exploration Geophysicists, 2001.
[2] 刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4): 784.
[2] Liu J, Qin F L. The application of the improved wavelet threshold method to seismic data de-noising[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 784-789.
[3] 孙永壮, 李键, 秦德文, 等. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[3] Sun Y Z, Li J, Qin D W, et al. The application of 3D edge-preserving de-noising methods based on structure oriented in a complex faults block:A case study of C oilfield in East China Sea[J]. Geophysical and Geochemical Exploration, 2021, 45(3):692-701.
[4] Rasoul A, Mokhtar M, Roshandel K A, et al. Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal[J]. Computers & Geosciences, 2020, 135:104376.
doi: 10.1016/j.cageo.2019.104376
[5] Sheriff R E, Geldart L P. Exploration seismology[M]. Cambridge: Cambridge University Press, 1995.
[6] Canales L L. Random noise reduction[C]// 54th Annual International Meeting. Atlanta:SEG, 1984:525-572.
[7] Chen Y K, Ma J T. Random noise attenuation by f-x empirical-mode decomposition predictive filtering[J]. Geophysics, 2014, 79(3): 81-91.
[8] Ray A, Jon C. Lateral prediction for noise attenuation by t-x and f-x techniques[J]. Geophysics, 1995, 60(6): 1887-1896.
doi: 10.1190/1.1443920
[9] Maïza B, Mirko V B. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics, 2009, 74(5): 89-98.
[10] 王亚娟, 李怀良, 庹先国, 等. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5): 1083-1089.
[10] Wang Y J, Li H L, Tuo X G, et al. A denoising method for microseismic signal based on the ensemble empirical mode decomposition of sample entropy threshold[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1083-1089.
[11] Liu W, Duan Z Y. Seismic signal denoising using f-x variational mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1313-1317.
doi: 10.1109/LGRS.2019.2948631
[12] Rasoul A, Roshandel K A, Mokhtar M, et al. Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1612-1618.
doi: 10.1109/JSTARS.2019.2906360
[13] Cai H P, He Z H, Huang D J. Seismic data denoising based on mixed time-frequency methods[J]. Applied Geophysics, 2011, 8(4): 319-327.
doi: 10.1007/s11770-011-0300-6
[14] Amir N S M, Saman G, Roshandel K A, et al. Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition[J]. Geophysics, 2016, 81(2): 117-124.
[15] Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.
doi: 10.1016/j.physa.2011.04.009
[16] Deng L, Yuan S Y, Wang S X. Sparse bayesian learning-based seismic denoise by using physical wavelet as basis functions[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1993-1997.
doi: 10.1109/LGRS.2017.2745564
[17] Bing P P, Liu W, Zhang Z H. A robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain[J]. IEEE Access, 2020, 8: 183546-183556.
doi: 10.1109/ACCESS.2020.3028145
[18] Gao J J, Aaron S, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): 173-187.
[19] Nadia K, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): 113-122.
[20] Xu P C, Lu W K, Wang B F. Seismic interference noise attenuation by convolutional neural network based on training data generation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 741-745.
doi: 10.1109/LGRS.2020.2982323
[21] Yu S W, Ma J W, Wang W L. Deep learning for denoising[J]. Geophysics, 2019, 84(6): 333-350.
[22] Zhang M, Liu Y, Chen Y K. Unsupervised seismic random noise attenuation based on deep convolutional neural network[J]. IEEE Access, 2019, 7: 179810-179822.
doi: 10.1109/ACCESS.2019.2959238
[23] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[23] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.
[24] Meng F L, Fan Q Y, Li Y. Self-supervised learning for seismic data reconstruction and denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1-5.
[25] Stephen A. Generative adversarial networks in seismic data processing[M]// Society of Exploration Geophysicists, 2018:1991-1995.
[26] Vicente O, Mauricio S. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): 25-32.
[27] Chen Y K, Zhou Y T, Chen W, et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4696-4711.
doi: 10.1109/TGRS.2017.2698342
[28] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
doi: 10.1137/080738970
[29] Ankit P, Selesnick I W. Enhanced low-rank matrix approximation[J]. IEEE Signal Processing Letters, 2016, 23(4): 493-497.
doi: 10.1109/LSP.2016.2535227
[30] Lu C Y, Zhu C M, Xu C Y, et al. Generalized singular value thresholding[J]. arXiv e-prints, 2015,(12).
[31] Rick C. Nonconvex splitting for regularized low-rank+sparse decomposition[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810-5819.
doi: 10.1109/TSP.2012.2208955
[32] Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern recognition, 2014.
[33] Zhang S A, Yin P H, Xin J. Transformed schatten-1 iterative thresholding algorithms for low rank matrix completion[J]. arXiv e-prints, 2015: 1506-4444.
[34] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
doi: 10.1109/18.382009
[35] Ewout V B, Michael P F. Probing the pareto frontier for basis pursuit solutions[J]. Siam J. Sci. Comput., 2008, 31(2): 890-912.
doi: 10.1137/080714488
[1] 王金刚, 安勇, 徐振旺. 基于Shearlet变换的非局部均值地震噪声压制[J]. 物探与化探, 2023, 47(1): 199-207.
[2] 崔亚彤, 王胜侯, 蔡忠贤. 基于快速自适应非局部均值滤波的地震随机噪声压制方法[J]. 物探与化探, 2022, 46(5): 1187-1195.
[3] 黄华, 李忠生, 郑革辉, 吴大林, 王中圣, 袁子恒. 震源车压制城市噪声机理及效果分析[J]. 物探与化探, 2020, 44(4): 803-809.
[4] 郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
[5] 贾春梅, 姜国庆, 刘志成, 许璐. 频域稀疏双曲Radon变换去噪方法[J]. 物探与化探, 2016, 40(3): 527-533.
[6] 尚新民, 刁瑞, 冯玉苹, 赵翠霞. 谱模拟方法在高分辨率地震资料处理中的应用[J]. 物探与化探, 2014, 38(1): 75-80.
[7] 薛永安, 王勇, 李红彩, 陆树勤. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1): 81-86.
[8] 冯飞, 王德利, 张亚红, 刘伟明, 朱恒. 结合曲波变换的焦点变换 在地震数据去噪和插值中的应用[J]. 物探与化探, 2013, 37(3): 480-487.
[9] 冯寅, 刘庆成. 对K-L变换滤波技术的评价[J]. 物探与化探, 2009, 33(4): 462-467.
[10] 钟凌云. 小波变换方法在地震资料噪声消除中的应用[J]. 物探与化探, 2007, 31(3): 245-249.
[11] 冯兴强, 郭建平. 两种压制随机噪声的滤波方法对比研究[J]. 物探与化探, 2006, 30(6): 545-547,550.
[12] 杨立强, 郝天珧, 宋海斌. 利用LOG算子和改进相干算法提高地震资料分辨率[J]. 物探与化探, 2005, 29(4): 351-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com