Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 809-823    DOI: 10.11720/wtyht.2021.1513
  综述 本期目录 | 过刊浏览 | 高级检索 |
电性源瞬变电磁法综述
张莹莹()
新疆大学 地质与矿业工程学院,新疆 乌鲁木齐 830047
Review on the study of grounded-source transient electromagnetic method
ZHANG Ying-Ying()
College of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China
全文: PDF(729 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电性源瞬变电磁法(TEM)具有探测深度大、受地形限制小、工作效率高等优点,近些年发展较快,涌现出一系列面向地面、半航空、地—井的电性源瞬变电磁新方法。本文通过回顾近些年国内外出现的新方法,即长偏移距瞬变电磁法(LOTEM)、短偏移距瞬变电磁法(SOTEM)、多通道瞬变电磁法(MTEM)、电性源半航空瞬变电磁法和电性源地—井瞬变电磁法的研究历史,总结各类方法在正演模拟、系统设计、反演成像和施工方法等方面的研究现状。研究结果表明:LOTEM研究基础丰厚,发展全面,是一种比较成熟的电性源TEM方法;而其他电性源TEM方法虽然取得了一些研究进展,但整体仍处在初步研究阶段,相关技术仍有待进一步提升;LOTEM中有价值的研究内容,如提高数据信噪比、高维反演和联合解释等,可为这些电磁勘探新技术提供借鉴,以期为高效率、高分辨率深部探测提供更多解决方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莹莹
关键词 电性源瞬变电磁法深部探测偏移距多通道半航空地—井    
Abstract

Grounded-source transient electromagnetic method (TEM) has many advantages such as deep exploration, flexible arrangement in rough terrain and high working efficiency. Recently it has got much attention and a series of new methods are available, ranging from surface to airborne and borehole method. In this paper, the authors review the research history of long-offset TEM (LOTEM), short-offset TEM (SOTEM), multi-channel TEM(MTEM), grounded-source semi-airborne TEM and grounded-source surface to borehole TEM, and summarize their research status in forward modeling, system design, inversion, imaging and field working. The results show that, as a well-developed grounded-source TEM, LOTEM has accumulated many research achievements. Although some progress has been made, the researches on other grounded-source TEMs are still in a primary stage and still need further improvement. Valuable research results in LOTEM, for example, noise suppression technology, high dimensional inversion and point interpretation, can be introduced to these newly developed electromagnetic methods, which can help provide solutions for high working efficiency and high resolution deep exploration.

Key wordsgrounded-source    transient electromagnetic method    deep exploration    offset    multi-channel    semi-airborne    surface to borehole
收稿日期: 2020-11-08      修回日期: 2021-03-09      出版日期: 2021-08-20
ZTFLH:  P631  
基金资助:新疆维吾尔自治区自然科学基金项目(2017D01C064)
作者简介: 张莹莹(1989-),女,博士,2016年毕业于长安大学,主要从事瞬变电磁场的理论与应用方面的研究工作。Email: zhangyy19890423@163.com
引用本文:   
张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
ZHANG Ying-Ying. Review on the study of grounded-source transient electromagnetic method. Geophysical and Geochemical Exploration, 2021, 45(4): 809-823.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1513      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/809
[1] Strack K M. Exploration with deep transient electromagnetics[M]. Elsevier Science Publishers B V Amsterdam, The Netherlands, 1992.
[2] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007,22(4):1195-1200.
[2] Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007,22(4):1195-1200.
[3] 朴化荣. 电磁测深法原理[M]. 北京: 地质出版社, 1990.
[3] Piao H R. Principles of electromagnetic sounding[M]. Beijing: Geological Publishing House, 1990.
[4] 刘天佑. 地球物理勘探概论[M]. 北京: 地质出版社, 2007.
[4] Liu T Y. Introduction to geophysical exploration[M]. Beijing: Geological Publishing House, 2007.
[5] Keller G V, Pritchard J I, Jacobson J J, et al. Megasource time-domain electromagnetic sounding methods[J]. Geophysics, 1984,49:993-1009.
[6] Vozoff K, Moss D, LeBrocq K L, et al. LOTEM electric field measurements for mapping resistive horizons in petroleum exploration[J]. Exploration Geophysics, 1985,16(3):309-312.
[7] Strack K, Luschen E, Kotz A W. Long-offset transient electromagnetic(LOTEM) depth soundings applied to crustal studies in the Black Forest and Swabian Alb,Federal Republic of Germany[J]. Geophysics, 1990,55(7):834-842.
[8] Strack M. LOTEM case histories in frontier areas of hydrocarbon exploration in Asia[C]// San Francisco: 60th Annual International Meeting, Expanded Abstracts with Biographies,Technical Program, 1999.
[9] Strack K, Hanstein T, Stoyer C H, et al. Time domain controlled source electromagnetics for hydrocarbon applications[M]. The Earth’s Magnetic Interior.Netherlands:Springer, 2011.
[10] Skokan C K, Andersen H T. Deep long-offset transient electromagnetic surveys for crustal studies in the USA[J]. Physics of the Earth and Planetary Interiors, 1991,66:39-50.
[11] Muller M, Hordt A, Neubauer F M. Electromagnetic technique’s success at Vesuvius points to use in forecasting eruptions[J]. Eos, Transactions, American Geophysical Union, 1999,80(35):393-401.
[12] Muller M, Hordt A, Neubauer F M. Internal structure of Mount Merapi, Indonesia,derived from long-offset transient electromagnetic data[J]. Journal of Geophysical Research, 2002,107(B9):2187.
[13] 严良俊, 胡文宝, 陈清礼, 等. 长偏移距瞬变电磁测深法在碳酸盐岩覆盖区落实局部构造的应用效果[J]. 地震地质, 2001,23(2):271-276.
[13] Yan L J, Hu W B, Chen Q L, et al. Trial with LOTEM to investigate detailed geological structure in the area covered with carbonatite[J]. Seismology and Geology, 2001,23(2):271-276.
[14] Stephan A, Schniggenfittig H, Strack K. Long-offset transient EM sounding north of the Rhine-Ruhr coal district Germany[J]. Geophysical Prospecting, 2006,39(4):505-525.
[15] Kafri U, Goldman M, Lyakhovsky V, et al. The configuration of the fresh-saline groundwater interface within the regional Judea Group carbon aquifer in northern Israel between the Mediterranean and the Dead Sea base levels as delineated by deep geoelectromagnetic soundings[J]. Journal of Hydrology, 2007,344:123-134.
[16] Ceia M, Carrasquilla A, Sato H K, et al. Long offset transient electromagnetic(LOTEM)for monitoring fluid injection in petroleum reservoirs—Preliminary results of Fazenda Alvorada Field(Brazil)[C]// Rio de Janeiro,Brazil: 10th International Congress of the Brazilian Geophysical Society, 2007.
[17] 谢兴兵, 周磊, 严良俊, 等. 时移长偏移距瞬变电磁法剩余油监测方法及应用[J]. 石油地球物理勘探, 2016,51(3):605-612.
[17] Xie X B, Zhou L, Yan L J, et al. Remaining oil detection with time-lapse long offset&window transient electromagnetic sounding[J]. Oil Geophysical Prospecting, 2016,51(3):605-612.
[18] Yang S. A single apparent resistivity expression for long-offset transient electromagnetics[J]. Geophysics, 1986,51(6):1291-1297.
[19] Bibby H M, Risk G F, Cald T G. Long offset tensor apparent resistivity surveys of the Taupo Volcanic Zone,New Zealand[J]. Journal of Applied Geophysics, 2002,49:17-32.
[20] Caldwell T, Bibby H M. The instantaneous apparent resistivity tensor:A visualization scheme for LOTEM electric field measurements[J]. Geophysical Journal International, 1998,135(3):817-834.
[21] 翁爱华, 王雪秋. 长偏移距瞬变电磁测深甚晚期响应及视电阻率的数值计算[J]. 地震地质, 2003,25(4):664-670.
[21] Weng A H, Wang X Q. Numerical simulations of very-late time response and apparent resistivity in long-offset time sounding[J]. Seismology and Geology, 2003,25(4):664-670.
[22] 陈清礼, 严良俊, 付志红. 均匀半空间长偏移距瞬变电磁法全区视电阻率的数值计算法方法[J]. 工程地球物理学报, 2009,6(4):390-394.
[22] Chen Q L, Yan L J, Fu Z H. Algorithm for the all-time apparent resistivity of LOTEM method[J]. Chinese Journal of Engineering Geophysics, 2009,6(4):390-394.
[23] Strack K M, Hanstein T H, Eilenz H N. LOTEM data processing for areas with high cultural noise levels[J]. Physics of the Earth and Planetary Interiors, 1989,53:261-269.
[24] 邵敏, 邱宁, 何展翔. 长偏移距瞬变电磁信号小波阈值去噪效果分析[J]. 工程地球物理学报, 2008,5(1):70-74.
[24] Shao M, Qiu N, He Z X. Effect of wavelet threshold de-noising on long-offset transient electromagnetic signal[J]. Chinese Journal of Engineering Geophysics, 2008,5(1):70-74.
[25] Cardador M H, Cuevas A, Watanabe H, et al. Experimental evaluation of hydrocarbon detection with the Long-Offset Time-Domain Electromagnetic Method in the Cretaceous carbonates of the Tampico-Misantla basin,mexico[J]. Journal of Applied Geophysics, 2003,52(2):103-122.
[26] 王阳, 李伟林, 李论, 等. LOTEM视电阻率曲线对一维层状介质的分辨能力[J]. 物探化探计算技术, 2018,40(2):197-204.
[26] Wang Y, Li W L, Li L, et al. Distinguishing ability for 1D model of LOTEM apparent resistivity curves[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018,40(2):197-204.
[27] Hordt A, Muller M. Understanding LOTEM data from mountainous terrain[J]. Geophysics, 2000,65(4):1113-1123.
[28] 唐新功, 胡文宝, 严良俊. 地堑地形对长偏移距瞬变电磁测深的影响研究[J]. 工程地球物理学报, 2004,1(4):313-317.
[28] Tang X G, Hu W B, Yan L J. Graben topographic effects to the long offset transient electromagnetic responses[J]. Chinese Journal of Engineering Geophysics, 2004,1(4):313-317.
[29] Tang X G, Hu W B, Yan L J. Topographic effects on long offset transient electromagnetic response[J]. Applied Geophysics, 2011,8(4):277-284.
[30] Hoheisel A, Hordt A, Hanstein T. The influence of induced polarization on long-offset transient electromagnetic data[J]. Geophysical Prospecting, 2010,52(5):417-426.
[31] Hordt A, Druskin V, Knizhnerman L, et al. Interpretation of 3-D effects in long-offset transient electromagnetic(LOTEM) soundings in Munsterland area/Germany[J]. Geophysics, 1992,57:1127-1137.
[32] Hordt A, Jodicke H, Strack K M, et al. Inversion of long-offset TEM soundings near the borehole Munsterland 1,Germany, and comparison with MT measurements[J]. Geophysical Journal International, 1992,108(3):930-940.
[33] 严良俊, 胡文宝, 陈清礼, 等. 长偏移距瞬变电磁测深的全区视电阻率求取及快速反演方法[J]. 石油地球物理勘探, 1999,34(5):532-538.
[33] Yan L J, Hu W B, Chen Q L, et al. The estimation and fast inversion of all-time apparent resistivities in long-offset transient electromagnetic sounding[J]. Oil Geophysical Prospecting, 1999,34(5):532-538.
[34] Commer M, Helwig S, Hordt A, et al. Interpretation of long-offset transient electromagnetic data from Mount Merapi, Indonesia,using a three-dimensional optimization approach[J]. Journal of Geophysical Research, 2004,110(B3):B03207.
[35] Commer M, Helwig S L, Hordt A, et al. New results on the resistivity structure of Merapi Volcano(Indonesia),derived from three-dimensional restricted inversion of long-offset transient electromagnetic data[J]. Geophysical Journal International, 2006,167(3):1172-1187.
[36] Hordt A, Dautel S, Tezkan B, et al. Interpretation of long-offset transient electromagnetic data form the Odenwald area,Germany, using two-dimensional modeling[J]. Geophysical Journal International, 2000,140(3):577-586.
[37] Khan M Y, Xue G Q, Chen W Y, et al. Analysis of Long-offset Transient Electromagnetic (LOTEM) Data in Time, Frequency, and Pseudo-seismic Domain[J]. Journal of Environmental and Engineering Geophysics, 2018,23(1):15-32.
[38] Liu Y J, Yogeshwar P, Hu X Y, et al. Effects of electrical anisotropy on long-offset transient electromagnetic data[J]. Geophysical Journal International, 2020,222(2):1074-1089.
[39] Beer J H, Roux C L, Hanstein T H, et al. Direct current resistivity and LOTEM model for the deep structure of the northern edge for the Kaapvaal craton, South Africa[J]. Physics of the Earth and Planetary Interiors, 1991,66:51-61.
[40] Strack K M, Vozoff K. Integrating long-offset transient electromagnetics(LOTEM) with seismic in an exploration environment[J]. Geophysical Prospecting, 1996,44(6):997-1017.
[41] Lin Z, Vozoff K, Smith G H, et al. Joint application of seismic and electromagnetic methods to coal characterisation at West Cliff Colliery,New South Wales[J]. Exploration Geophysics, 1996,27(4):205-215.
[42] Kalscheuer T, Commer M, Helwig S L, et al. Electromagnetic evidence for an ancient avalanche caldera rim on the south flank of Mount Merapi, Indonesia[J]. Journal of Volcanology and Geothermal Research, 2007,162:81-97.
[43] Harnoon A, Adrian J, Bergers R, et al. Joint inversion of long-offset and central-loop transient electromagnetic data: Application to a mud volcano exploration in Perekishkul, Azerbaijan[J]. European Association of Geoscientists & Engineers, Geophysical Prospecting, 2014: 1-17.
[44] 涂君. 大电磁测深法与长偏移距瞬变电磁法联合反演方法研究[D]. 成都:成都理工大学, 2019.
[44] Tu J. Research on the joint inversion of magnetotelluric sounding and long offset transient electromagnetic methods[D]. Chengdu:Chengdu University of Technology, 2019.
[45] Ziolkowski A M. Short-offset transient electromagnetic geophysical surveying[P]. United State Patent Application Publication, 2010.
[46] 薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013,56(1):255-261.
[46] Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013,56(1):255-261.
[47] 薛国强, 闫述, 陈卫营. 电性源瞬变电磁短偏移探测方法[J]. 中国有色金属学报, 2013,23(9):2365-2370.
[47] Xue G Q, Yan S, Chen W Y. Exploration technique due to grounded wire source with short-offset[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2365-2370.
[48] 薛国强, 闫述, 陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展, 2014,29(1):177-181.
[48] Xue G Q, Yan S, Chen W Y. Research prospect to grounded-wire TEM with short-offset[J]. Progress in Geophysics, 2014,29(1):177-181.
[49] 李功强, 程久龙, 高峰, 等. 煤矿深部采区岩层富水性短偏移距瞬变电磁法探测[J]. 中国矿业, 2013,22(10):131-134.
[49] Li G Q, Cheng J L, Gao F, et al. Research on detecting strata water-bearing property in deep coal mining area using short-offset transient electromagnetic method[J]. China Mining Magazine, 2013,22(10):131-134.
[50] Xue G Q, Gelius L J, Sakyi P A, et al. Discovery of a hidden BIF deposit in Anhui province, China by integrated geological and geophysical investigations[J]. Ore Geology Reviews, 2014,63:470-477.
[51] Chen W Y, Xue G Q, Younis K M, et al. Application of short -offset TEM (SOTEM) technique in mapping water-enriched zones of coal stratum, an example from East China[J]. Pure and Applied Geophysics, 2015,172:1643-1651.
[52] Zhou N N, Xue G Q, Chen W Y, et al. Large-depth Hydro-geological detection in the North China-type coal field through Short-offset Grounded-wire TEM[J]. Environmental Earth Sciences, 2015,74(3):2393-2404.
[53] Zhou N N, Xue G Q, Hou D Y, et al. Short-offset grounded-wire TEM method for efficient detection of mined-out areas in vegetation-covered mountainous coalfields[J]. Exploration Geophysics, 2017,48(4):374-382.
[54] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017,41(2):354-359.
[54] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017,41(2):354-359.
[55] 陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020,44(5):1226-1232.
[55] Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas: A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020,44(5):1226-1232.
[56] Xue G Q, Zhang L B, Hou D Y, et al. Integrated geological and geophysical investigations for the discovery of deeply buried gold-polymetallic deposits in China[J]. Geological Journal, 2019,55(1):1771-1780.
[57] 薛国强, 闫述, 陈卫营, 等. SOTEM深部探测关键问题分析[J]. 地球物理学进展, 2015,30(1):121-125.
[57] Xue G Q, Yan S, Chen W Y, et al. The key problems of SOTEM used in deep detection[J]. Progress in Geophysics, 2015,30(1):121-125.
[58] Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electromagnetic detection in China[J]. Science China(Earth Sciences), 2020,63:1268-1277.
[59] 薛国强, 陈卫营, 武欣, 等. 电性源短偏移距瞬变电磁研究进展[J]. 中国矿业大学学报, 2020,49(2):215-226.
[59] Xue G Q, Chen W Y, Wu X, et al. Review on research of short-offset transient electromagnetic method[J]. Journal of China University of Mining & Technology, 2020,49(2):215-226.
[60] 崔江伟. 电性源短偏移距瞬变电磁法全程视电阻率计算研究[D]. 南昌:东华理工大学, 2015.
[60] Cui J W. Calculation of all-time apparent resisitivity for the SOTEM[D]. Nanchang:East China Institute of Technology, 2015.
[61] 侯东洋, 薛国强, 陈卫营. SOTEM与CSAMT对低阻层的分辨能力比较[J]. 物探与化探, 2016,40(1):185-189.
[61] Hou D Y, Xue G Q, Chen W Y. Distinguishing capability of SOTEM and CSAMT for low resistivity layer[J]. Geophysical and Geochemical Exploration, 2016,40(1):185-189.
[62] 陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020,44(5):1226-1232.
[62] Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas: A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020,44(5):1226-1232.
[63] 陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析及最佳观测区域研究[J]. 地球物理学报, 2016,59(2):739-748.
[63] Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016,59(2):739-748.
[64] Zhou N N, Xue G Q, Li H. A comparison of different-mode fields generated from grounded-wire source based on the 1D model[J]. Pure and Applied Geophysics, 2016,173(2):591-606.
[65] 常江浩, 薛国强. 电性源短偏移距瞬变电磁场扩散规律三维数值模拟[J]. 地球科学与环境学报, 2020,42(6):711-721.
[65] Chang J H, Xue G Q. Three-dimensional numerical simulation of diffusion law of short-offset grounded-wire transient electromagnetic field[J]. Journal of Earth Sciences and Environment, 2020,42(6):711-721.
[66] 薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析及应用[J]. 物探与化探, 2017,41(2):381-384.
[66] Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical source Short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017,41(2):381-384.
[67] Zhou N N, Xue G Q, Hou D Y, et al. An investigation of the effect of source geometry on grounded-wire TEM surveying with horizontal electric field[J]. Journal of Environmental and Engineering Geophysics, 2018,23(1):143-151.
[68] Zhou N N, Hou D Y, Xue G Q. Effects of shadow and source overprint on grounded-wire transient electromagnetic response[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15:1169-1173.
[69] Zhou N N, Xue G Q. Minimum depth of investigation for grounded-wire TEM due to self-transients[J]. Journal of Applied Geophysics, 2018,152:203-207.
[70] Zhou N N, Xue G Q, Li H, et al. Investigation of axial electric field measurement with grounded-wire TEM surveys[J]. Pure and Applied Geophysics, 2018,175:365-373.
[71] Hou D Y, Xue G Q, Zhou N N, et al. Exploration of deep magnetite deposit under thick and conductive overburden with Ex component of SOTEM: a case study in China[J]. Pure and Applied Geophysics, 2019,176:857-871.
[72] 陈稳, 薛国强, 陈卫营, 等. SOTEM多分量激电响应特性分析[J]. 地球物理学进展, 2019,34(5):1859-1865.
[72] Chen W, Xue G Q, Chen W Y, et al. Multi-component response of SOTEM with IP effect[J]. Progress in Geophysics, 2019,34(5):1859-1865.
[73] Khan M Y, Xue G Q, Chen W Y. Investigation of groundwater in-rush zone using petrophysical logs and short-offset transient electromagnetic (SOTEM) data[J]. Journal of Environmental & Engineering Geophysics, 2020,25(3):433-437.
[74] 陈卫营, 薛国强. SOTEM一维等效源反演方法[J]. 物探与化探, 2016,40(2):411-416.
[74] Chen W Y, Xue G Q. 1-D image source inversion of SOTEM data[J]. Geophysical and Geochemical Exploration, 2016,40(2):411-416.
[75] Chen W Y, Xue G Q, Muhammad Y. Quasi MT inversion of short-offset transient electromagnetic data[J]. Pure and Applied Geophysics, 2016,173(7):2413-2422.
[76] 陈卫营, 李海, 薛国强, 等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报, 2017,60(9):3667-3676.
[76] Chen W Y, Li H, Xue G Q, et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics, 2017,60(9):3667-3676.
[77] Wright D, Ziolkowski A, Hobbs B. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J]. The Leading Edge, 2002,21(9):852-864.
[78] Wright D, Ziolkowski A, Hobbs B. Detection of subsurface resistivity contrasts with application to location of fluids[P]: USA 20050237063, 2005.
[79] Ziolkowski A, Hobbs B, Wright D. Multi-transient electromagnetic demonstration survey in France[J]. Geophysics, 2007,72(4):197-209.
[80] Ziolkowski A, Parr R, Wright D, et al. Multi-transient EM repeatability experiment over North Sea Harding field[C]// Houston,Texas: 71st SEG Annual Meeting, Society of Exploration Geophysics, 2009.
[81] 薛国强, 闫述, 底青云, 等. 多道瞬变电磁法(MTEM)技术分析[J]. 地球科学与环境学报, 2015,37(1):94-100.
[81] Xue G Q, Yan S, Di Q Y, et al. Technical analysis of multi-transient electromagnetic method[J]. Journal of Earth Sciences and Environment, 2015,37(1):94-100.
[82] 薛国强, 武欣, 李海, 等. 多道瞬变电磁法(MTEM)国外研究进展[J]. 地球物理学进展, 2016,31(5):2187-2191.
[82] Xue G Q, Wu X, Li H, et al. Progress of multi-transient electromagnetic method in abroad[J]. Progress in Geophysics, 2016,31(5):2187-2191.
[83] 王显祥, 底青云, 邓居智. 多通道瞬变电磁法油气藏动态检测[J]. 石油地球物理勘探, 2016,51(5):1021-1030.
[83] Wang X X, Di Q Y, Deng J Z. Reservoir dynamic detection based on multi-channel transient electromagnetic[J]. Oil Geophysical Prospecting, 2016,51(5):1021-1030.
[84] 张文伟, 底青云, 雷达, 等. 物探新方法——多通道瞬变电磁法在金属矿勘探中的应用[J]. 黄金科学技术, 2018,26(1):1-8.
[84] Zhang W W, Di Q Y, Lei D, et al. Multi-channel transient electromagnetic method:a new geophysical method and its application in exploring metallic ore deposits[J]. Gold Science and Technology, 2018,26(1):1-8.
[85] 欧阳涛, 底青云, 薛国强, 等. 利用多通道瞬变电磁法识别深部矿体——以内蒙兴安盟铅锌银矿为例[J]. 地球物理学报, 2019,62(5):1981-1990.
[85] Ou Y T, Di Q Y, Xue G Q, et al. Identifying deep ore bodies using the Multi-Channel Transient Electromagnetic Method(MTEM):an example of a lead-zinc-silver mine in Inner Mongolia[J]. Chinese Journal of Geophysics, 2019,62(5):1981-1990.
[86] 薛国强, 底青云, 王若, 等. 多通道瞬变电磁法资料处理方法技术综述[J]. 地球物理学进展, 2020,35(1):211-215.
[86] Xue G Q, Di Q Y, Wang R, et al. Overview on data processing methods of multi-channel transient electromagnetic method[J]. Progress in Geophysics, 2020,35(1):211-215.
[87] 智庆全. MTEM波场变换与偏移成像方法研究[D]. 西安:长安大学, 2015.
[87] Zhi Q Q. Study on wave field transformation and migration imaging of MTEM data[D]. Xi’an: Chang’an University, 2015.
[88] 张文伟, 真齐辉, 底青云. 多通道瞬变电磁法频率域比值算法及视电阻率计算研究[J]. 地球物理学报, 2018,61(10):4171-4181.
[88] Zhang W W, Zhen Q H, Di Q Y. Study on MTEM frequency-domain ratio method and apparent resistivity calculation[J]. Chinese Journal of Geophysics, 2018,61(10):4171-4181.
[89] 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015,58(7):2566-2577.
[89] Qi Y F, Yin C C, Wang R, et al. Multi-transient EM full-time forward modeling and inversion of m-squences[J]. Chinese Journal of Geophysics, 2015,58(7):2566-2577.
[90] 李海, 薛国强, 钟华森, 等. 多道瞬变电磁法共中心点道集数据联合反演[J]. 地球物理学报, 2016,59(12):4439-4447.
[90] Li H, Xue G Q, Zhong H S, et al. Joint inverison of CMP gathers of multi-channel transient electromagnetic data[J]. Chinese Journal of Geophysics, 2016,59(12):4439-4447.
[91] Wright D, Ziolkowski A, Hall G. Improving signal-to-noise ratio using pseudo random binary sequences in multi-transient electromagnetic(MTEM) data[C]// Vienna: Proceedings of the 68th EAGA Conference and Exhibition,SPE, 2006.
[92] 袁哲, 张一鸣, 郑起佳. 多道瞬变电磁法中m序列抗噪性定量评估及编码参数优选[J]. 石油地球物理勘探, 2018,52(1):195-205.
[92] Yuan Z, Zhang Y M, Zheng Q J. Anti-noise quantitative analysis of the m-sequence in the multi-transient electromagnetic method and its coding parameter optimization[J]. Oil Geophysical Prospecting, 2018,52(1):195-205.
[93] 袁哲, 张一鸣, 王旭红, 等. 多通道瞬变电磁法激励源降噪性能对比研究[J]. 地球物理学进展, 2020,36(1):425-433.
[93] Yuan Z, Zhang Y M, Wang X H, et al. Comparative study on noise reduction performance of MTEM sources[J]. Progress in Geophysics, 2020,36(1):425-433.
[94] 张文伟, 底青云, 耿启立, 等. 基于数字递归陷波的多通道瞬变电磁法周期噪声去除研究[J]. 物探与化探, 2020,44(2):278-289.
[94] Zhang W W, Di Q Y, Geng Q L, et al. The removal of MTEM periodic noise based on digital recursive notching[J]. Geophysical and Geochemical Exploration, 2020,44(2):278-289.
[95] Wu X, Xue G Q, Wang S, et al. The Suppression of Powerline Noise for the time-domain electromagnetic method with coded source based on independent component analysis[J]. Journal of Environmental & Engineering Geophysics, 2019,24(4):513-523.
[96] 钟华森, 薛国强, 李貅, 等. 多道瞬变电磁法(MTEM)虚拟波场提取技术[J]. 地球物理学报, 2016,59(12):4424-44431.
[96] Zhong H S, Xue G Q, Li X, et al. Pseudo wavefield extraction in the multi-channel transient electromagnetic(MTEM) method[J]. Chinese Journal of Geophysics, 2016,59(12):4424-44431.
[97] 涂小磊, 底青云, 王亚璐. 多通道瞬变电磁有限差分正演模拟[J]. 地球物理学进展, 2015,30(5):2225-2232.
[97] Tu X L, Di Q Y, Wang Y L. Finite-difference approach for 3D multi-channel transient electromagnetic modeling[J]. Progress in Geophysics, 2015,30(5):2225-2232.
[98] 王若, 王妙月, 底青云, 等. 多通道瞬变电磁法2D有限元模拟[J]. 地球物理学报, 2018,61(12):5048-5095.
[98] Wang R, Wang M Y, Di Q Y, et al. 2D FEM modeling on the multi-channel transient electromagnetic method[J]. Chinese Journal of Geophysics, 2018,61(12):5048-5095.
[99] Di Q Y, Li H, Xue G Q, et al. Pseudo-2D Trans-dimensional Bayesian inversion of the full waveform TEM response from PRBS source[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,99:1-9.
[100] Hobbs B, Ziolkowski A, Wright D. Multi-Transient Electromagnetics(MTEM)-controlled source equipment for subsurface resistitivty investigation[C]// 18th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth,EI Vendrell Spain, 2006: 17-23.
[101] 张盛泉. 大功率电法发送机中全波形记录技术研究[D]. 北京:中国地质大学(北京), 2015.
[101] Zhang S Q. Development of full-waveform recording technology in high-power electrical transmitter[D]. Beijing:China University of Geosciences, 2015.
[102] 薛国强, 底青云, 王若, 等. 多通道瞬变电磁法资料处理方法技术综述[J]. 地球物理学进展, 2020,35(1):211-215.
[102] Xue G Q, Di Q Y, Wang R, et al. Overview on data processing methods of multi-channel transient electromagnetic method[J]. Progress in Geophysics, 2020,35(1):211-215.
[103] 董庆运. MTEM勘探系统中电源站的设计[D]. 合肥:中国科学技术大学, 2015.
[103] Dong Q Y. Implementation of battery management unit in MTEM system[D]. Hefei:University of Science and Technology of China, 2015.
[104] 张乐. MTEM勘探系统中交叉站的设计[D]. 合肥:中国科学技术大学, 2015.
[104] Zhang L. The implementation of line manage unit in MTEM system[D]. Hefei:University of Science and Technology of China, 2015.
[105] 底青云, 雷达, 王中兴, 等. 多通道大功率电法勘探仪集成试验[J]. 地球物理学报, 2016,59(12):4399-4407.
[105] Di Q Y, Lei D, Wang Z X, et al. An integrated test of the multi-channel transient electromagnetic system[J]. Chinese Journal of Geophysics, 2016,59(12):4399-4407.
[106] 林凡强. 多通道瞬变电磁接收仪研发及采集研究[D]. 成都:成都理工大学, 2017.
[106] Lin F Q. The development of a multi-channel transient electromagnetic receiver and its acquisition tests[D]. Chengdu:Chengdu University of Technology, 2017.
[107] 何瑞昊. MTEM全波形记录仪上位机软件的实现[D]. 北京:中国地质大学(北京), 2017.
[107] He R H. The development of MTEM voltage and current logger software[D]. Beijing:China University of Geosciences, 2017.
[108] 王旭红, 张一鸣, 刘蔚. 多道瞬变电磁法发射机供电关键技术研究[J]. 上海交通大学学报, 2019,53(3):355-365.
[108] Wang X H, Zhang Y M, Liu W. Key technology study of power supply for multi-transient electromagnetic method transmitter[J]. Journal of Shanghai Jiaotong University, 2019,53(3):355-365.
[109] Nabighian N M. Electromagnetic methods in applied geophysics-theory (volume 1)[M]. Tulsa OK: Society of Exploration, 1988.
[110] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne EM(GREATEM)[J]. Exploration Geophysics, 1998,29:61-64.
[111] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of mount Bandai, north-eastern Japan[J]. Exploration Geophysics, 2009,40:1-7.
[112] Allah S A, Ito H, Mogi T, et al. Three-dimensional resistivity characterization of a coastal area: application of grounded electrical-source airborne transient electromagnetic (GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics, 2013,99(3):1-11.
[113] Ito H, Mogi T, Jomori A, et al. Further investigation of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics[J]. Earth Planets & Space, 2011,63(8):e9-e12.
[114] Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics, 2013,44:A-D
[115] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013,56(11):3640-3650.
[115] Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on unmanned airship[J]. Chinese Journal of Geophysics, 2013,56(11):3640-3650.
[116] Wang Y, Ji Y J, Li S Y, et al. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals[J]. Exploration Geophysics, 2013,44:229-237.
[117] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013,56(9):3145-3152.
[117] Li S Y, Lin J, Yang G H, et al. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013,56(9):3145-3152.
[118] 方涛, 张建军, 付成群, 等. 无人机地空瞬变电磁系统在冶山地下巷道探测中的应用[J]. 地球物理学进展, 2015,30(5):2366-2372.
[118] Fang T, Zhang J J, Fu C Q, et al. Using ground-airborne transient electromagnetic system on unmanned aerial vehicle detecting Yeshan underground tunnels[J]. Progress in Geophysics, 2015,30(5):2366-2372.
[119] 刘金鹏. 电性源地空瞬变电磁法在采空区探测中的应用[D]. 西安:长安大学, 2018.
[119] Liu J P. The application of ground-airborne transient electromagnetic method with electric source in the gobs detection[D]. Xi’an: Chang’an University, 2018.
[120] 吴启龙. 半航空瞬变电磁视电阻率成像及在复杂地形区域隧道勘察中的应用[D]. 济南:山东大学, 2019.
[120] Wu Q L. Semi-Airborne transient electromagnetic apparent resistivity imaging and its application in tunnel survey in complex terrain areas[D]. Jinan: Shandong University, 2019.
[121] 刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017,32(5):2222-2229.
[121] Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017,32(5):2222-2229.
[122] 吴寿勇. 半航空电磁勘查系统数据采集关键技术研究[D]. 成都:成都理工大学, 2014.
[122] Wu S Y. Research of data acquisition key technologies of half aviation electromagnetic exploration system[D]. Chengdu:Chengdu University of Technology, 2014.
[123] 李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都:成都理工大学, 2015.
[123] Li L L. Study on the key technology of the GREATEM transmitter[D]. Chengdu:Chengdu University of Technology, 2015.
[124] 王金梅. 无人机半航空瞬变电磁信号接收技术研究[D]. 成都:成都理工大学, 2018.
[124] Wang J M. The research on receiving technology of semi-airborne transient electromagnetic receiver[D]. Chengdu:Chengdu University of Technology, 2018.
[125] 张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017,32(4):1735-1741.
[125] Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017,32(4):1735-1741.
[126] 王振荣, 程久龙, 宋立兵, 等. 地空时间域电磁系统在陕西神木地区煤矿采空区勘查中的应用[J]. 地球科学与环境学报, 2020,42(6):776-783.
[126] Wang Z R, Cheng J L, Song L B, et al. Application of Grounded-airborne time domain electromagnetic system in goaf exploration of coal mine in Shenmu area of Shaanxi,China[J]. Journal of Earth Sciences and Environment, 2020,42(6):776-783.
[127] 谢小国, 魏良帅, 王绪本, 等. 半航空瞬变电磁法在古河道结构探测中的应用[J]. 地球物理学进展, 2021, http://kns.cnki.net/kcms/detail/11.2982.P.20210209.1546.021.html.
[127] Xie X G, Wei L S, Wang X B, et al. Application of semi-airborne TEM to structure exploration in the old channels[J]. Progress in Geophysics, 2021, http://kns.cnki.net/kcms/detail/11.2982.P.20210209.1546.021.html.
[128] 毛鑫鑫, 毛立峰, 杨聪, 等. 半航空瞬变电磁数据小波降噪方法研究[J]. 地球物理学进展, 2020, http://kns.cnki.net/kcms/detail/11.2982.P.20201223.1126.006.html.
[128] Mao X X, Mao L F, Yang C, et al. Research on wavelet denoising method for semi-airborne transient electromagnetic data[J]. Progress in Geophysics, 2020, http://kns.cnki.net/kcms/detail/11.2982.P.20201223.1126.006.html.
[129] 阳贵红. 时域电性源地-空电磁探测数据预处理研究[D]. 长春:吉林大学, 2012.
[129] Yang G H. Data preprocessing research on electrical-source of time domain ground-airborne electromagnetic[D]. Changchun: Jilin University, 2012.
[130] 张莹莹. 水平电偶源地空系统瞬变电磁法多分量解释技术及全域视电阻率定义研究[D]. 西安:长安大学, 2013.
[130] Zhang Y Y. Study on multi-component interpretation and full field apparent resistivity definition of semi-airborne transient electromagnetic method with electrical dipole on the surface[D]. Xi’an: Chang’an University, 2013.
[131] 张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015,58(8):2745-2758.
[131] Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics, 2015,58(8):2745-2758.
[132] 吕仁斌. 半航空瞬变电磁数据处理及快速成像方法研究[D]. 成都:成都理工大学, 2017.
[132] Lyu R B. Research on rapid simulation and data processing of semi-aerial transient electromagnetic[D]. Chengdu:Chengdu University of Technology, 2017.
[133] 易国财, 王仕兴, 王绪本, 等. 基于全区视电阻率的半航空瞬变电磁法对低阻薄层的探测能力探讨[J]. 地球物理学进展, 2021, http://kns.cnki.net/kcms/detail/11.2982.p.20210208.1323.080.html.
[133] Yi G C, Wang S X, Wang X B, et al. Study on the detection capability of low resistivity thin layer by semi-aviation transient electromagnetic method based on all-time apparent resistivity[J]. Progress in Geophysics, 2021, http://kns.cnki.net/kcms/detail/11.2982.p.20210208.1323.080.html.
[134] 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015,58(1):277-288.
[134] Li X, Zhang Y Y, Lu X S, et al. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics, 2015,58(1):277-288.
[135] 张莹莹. 地空瞬变电磁法逆合成孔径成像方法研究[D]. 西安:长安大学, 2016.
[135] Zhang Y Y. Study on inverse synthetic aperture imaging of ground-airborne transient electromagnetic method[D]. Xi’an:Chang’an University, 2016.
[136] 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016,31(2):869-876.
[136] Zhang Y Y, Li X, Li J, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2016,31(2):869-876.
[137] 王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, http://kns.cnki.net/kcms/detail/11.2982.P.20201223.1447.022.html.
[137] Wang S X, Yi G C, Wang X B, et al. Research on the semi-airborne transient electromagnetic conductivity depth rapid imaging method based on segmented binary search algorithm[J]. Progress in Geophysics, 2021, http://kns.cnki.net/kcms/detail/11.2982.P.20201223.1447.022.html.
[138] 嵇艳鞠, 徐江, 吴琼, 等. 基于神经网络电性源半航空视电阻率反演研究[J]. 电波科学学报, 2014,29(5):973-980.
[138] Ji Y J, Xu J, Wu Q, et al. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neutral network[J]. Chinese Journal of Radio Science, 2014,29(5):973-980.
[139] 徐江. 基于人工神经网络电性源半航空视电阻率反演方法研究[D]. 长春:吉林大学, 2014.
[139] Xu J. Apparent resisitivity inversion research of electrical-source of semi-airborne transient electromagnetic based on neutral network method[D]. Changchun:Jilin University, 2014.
[140] 赵涵, 景旭, 李貅, 等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019,43(1):132-142.
[140] Zhao H, Jing X, Li X, et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2019,43(1):132-142.
[141] 张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演物[J]. 物探化探计算技术, 2017,39(1):1-8.
[141] Zhang P, Yu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(1):1-8.
[142] Abdallah S, Mogi T, Kim H J. Three-dimensional inversion of GREATEM data:application to GREATEM survey data from Kujukuri Beach,Japan[J]. Applied Earth Observations and Remote Sensing, 2017,99:1-7.
[143] 杨聪, 毛立峰, 毛鑫鑫, 等. 半航空瞬变电磁自适应正则化-阻尼最小二乘算法研究[J]. 地质与勘探, 2020,56(1):137-146.
[143] Yang C, Mao L F, Mao X X, et al. Study on the semi-aerospace transient electromagnetic adaptive regularization-damped least squares algorithm[J]. Geology and Exploration, 2020,56(1):137-146.
[144] Verma S K, Mogi T, Allah S A. Response characteristics of GREATEM system considering a half-space model[C]// Giza, Egypt: 20th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth, 2010.
[145] 宿传玺. 浅层岩溶半航空瞬变电磁响应规律与试验研究[D]. 济南:山东大学, 2018.
[145] Su C X. Responses and experimental studies of semi-airborne transient electromagnetic for shallow karst[D]. Jinan: Shandong University, 2018.
[146] 曹凤凤. 地空瞬变电磁起伏地形效应的特征研究[D]. 西安:长安大学, 2019.
[146] Cao F F. Study on characteristics of rugged terrain effect of ground-airborne transient electromagnetic[D]. Xi’an: Chang’an University, 2019.
[147] Ma Z J, Di Q Y, Li D, et al. The optimal survey area of the semi-airborne TEM method[J]. Journal of Applied Geophysics, 2020,172:103884.
[148] Li H, Qi Z P, Li X, et al. Numerical modeling analysis of multi-source semi-airborne TEM systems using a TFEM[J]. Journal of Geophysics and Engineering, 2020,17(3):399-410.
[149] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021,45(1):102-113.
[149] Zhang Y Y. An analysis of full-component response of multi-source semi-airborne TEM method[J]. Geophysical and Geochemical Exploration, 2021,45(1):102-113.
[150] 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021,64(2):716-723.
[150] Li X, Hu W M, Xue G Q. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal of Geophysics, 2021,64(2):716-723.
[151] 李术才, 李凯, 翟明华, 等. 矿井地面-井下电性源瞬变电磁探测响应规律分析[J]. 煤炭学报, 2016,41(8):2024-2032.
[151] Li S C, Li K, Zhai M H, et al. Analysis of grounded transient electromagnetic with surface-tuunel configuration in mining[J]. Journal of China Coal Society, 2016,41(8):2024-2032.
[152] 武军杰. 地井与地空瞬变电磁联合解释方法研究[D]. 西安:长安大学, 2018.
[152] Wu J J. Study on joint interpretation of borehole and ground-airborne TEM data[D]. Xi’an:Chang’an University, 2018.
[153] 武军杰, 李貅, 智庆全, 等. 电性源地—井瞬变电磁全域视电阻率定义[J]. 地球物理学报, 2017,60(4):1595-1605.
[153] Wu J J, Li X, Zhi Q Q, et al. Full field apparent resistivity definition of borehole TEM with electric source[J]. Chinese Journal of Geophysics, 2017,60(4):1595-1605.
[154] 武军杰, 李貅, 智庆全, 等. 电性源地—井瞬变电磁异常场响应特征初步分析[J]. 物探与化探, 2017,41(1):129-135.
[154] Wu J J, Li X, Zhi Q Q, et al. A preliminary analysis of anomalous TEM response characteristics in borehole with electric transmitter[J]. Geophysical and Geochemical Exploration, 2017,41(1):129-135.
[155] 武军杰, 李貅, 智庆全, 等. 电性源地—井瞬变电磁三分量响应特征分析[J]. 地球物理学进展, 2017,32(3):1273-1278.
[155] Wu J J, Li X, Zhi Q Q, et al. Analysis of three component TEM response characteristics of electric source dill hole TEM[J]. Progress in Geophysics, 2017,32(3):1273-1278.
[156] Chen W Y, Khan M Y, Xue G Q. Response of surface-to-borehole SOTEM method on 2D earth[J]. Journal of Geophysics and Engineering, 2017,14(4):987-997.
[157] 陈卫营, 韩思旭, 薛国强. 电性源地—井瞬变电磁法全分量响应特性与探测能力分析[J]. 地球物理学报, 2019,62(5):1969-1980.
[157] Chen W Y, Han S X, Xue G Q. Analysis on the full-component response and detectability of electric source surface-to-borehole TEM method[J]. Chinese Journal of Geophysics, 2019,62(5):1969-1980.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[4] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[5] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[6] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[7] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[8] 石战战, 庞溯, 王元君, 池跃龙, 周强. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6): 1444-1453.
[9] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
[10] 吴北辰, 潘洋润奕, 程久龙, 王辉, 姚娣, 庞肖颖. 瞬变电磁法超小线圈并联式发射回线设计实验[J]. 物探与化探, 2022, 46(4): 934-939.
[11] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[12] 苏云, 游洪文, 李令喜, 孟凡冰, 李敏杰, 唐娟, 谢金丽. 沙漠区可控震源采集资料“黑三角”强能量噪声压制技术[J]. 物探与化探, 2022, 46(2): 410-417.
[13] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[14] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[15] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com