Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 268-274    DOI: 10.11720/wtyht.2022.1167
  工程勘查 本期目录 | 过刊浏览 | 高级检索 |
TSP在高地温—高地应力隧道地质预报中的问题及改进
范占锋1(), 蔡建华2, 赵伟3
1.成都大学 建筑与土木工程学院,四川 成都 610106
2.中铁西南科学研究院有限公司,四川 成都 611731
3.中铁十八局集团有限公司,天津 300222
Problems and improvements of Tunnel Seismic Prediction in geological prediction of tunnels under high geotemperature and high in-situ geostress
FAN Zhan-Feng1(), CAI Jian-Hua2, ZHAO Wei3
1. School of Architecture and Civil Engineering,Chengdu University,Chengdu 610106,China
2. China Railway Southwest Research Institute Co.,Ltd.,Chengdu 611731,China
3. China Railway 18th Bureau Group Co.,Ltd.,Tianjin 300222,China
全文: PDF(2566 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

正在建设的川藏铁路有大量隧道具有高地温、高地应力特征,如何提高高地温—高地应力隧道超前地质预报的精度是工程建设面临的一大难点。以TSP法超前地质预报为例,分析该方法在高地温—高地应力隧道探测主要存在两方面的问题:一方面是采用乳化炸药和塑料导爆管在高岩温炮孔中激震时易发生拒爆、哑炮及瞎炮,影响数据采集;另一方面是数据处理未考虑高地应力隧道已开挖区和未开挖区的波速变化。针对这些问题,提出六点改进措施,即:研制绝热保温袋起爆药包、建立基于多元地质信息的智能工程评价体系、改变TSP的激震方式、推广超前地质预报新技术新方法、研发适用于TBM的超前地质预报系统、改善地质预报组织管理。这些措施可为高地温—高地应力地区隧道超前地质预报的高效探测提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范占锋
蔡建华
赵伟
关键词 地质预报隧道高地温高地应力地震波    
Abstract

The Sichuan-Tibet Railway under construction has a large number of tunnels under high geotemperature and high in-situ geostress.How to improve the accuracy of advanced geological prediction of these tunnels is a major difficulty in railway construction.Taking the Tunnel Seismic Prediction (TSP) method for advanced geological prediction as an example,analyses reveal that there are two major problems in the detection of the tunnels.On is that the use of emulsion explosives and plastic detonating tubes in blastholes under a high rock-temperature is liable to cause misfires,thus affecting data acquisition.The other is that the wave velocity differences between the excavated and unexcavated areas of tunnels under high in-situ geostress are not considered in data processing.Targeting these problems,this paper proposes six improvement measures,namely researching and developing detonation packs with a thermal insulation bag,establishing intelligent engineering assessment systems based on multiple geological information,changing the models of shock initiation of the TSP,popularizing new technologies and methods of advanced geological prediction,researching and developing advanced geological prediction systems suitable for Tunnel Boring Machines (TBMs),and improving the organizational management of geological prediction.All these measures can provide references for efficient detection of advanced geological prediction of tunnels in areas with high geotemperature and high in-situ geostress.

Key wordsgeological prediction    tunnel    high geotemperature    high in-situ stress    seismic wave
收稿日期: 2021-03-24      修回日期: 2021-11-02      出版日期: 2022-02-20
ZTFLH:  P315.3  
基金资助:四川省科技计划项目(2019YJ0667);中国铁建股份有限公司科技重大专项(2019-A05);成都大学基金项目(2081921006)
作者简介: 范占锋(1985-),男,山西运城,讲师,博士,主要从事岩石动力学、隧道超前地质预报方面的研究工作。Email: 695950248@qq.com
引用本文:   
范占锋, 蔡建华, 赵伟. TSP在高地温—高地应力隧道地质预报中的问题及改进[J]. 物探与化探, 2022, 46(1): 268-274.
FAN Zhan-Feng, CAI Jian-Hua, ZHAO Wei. Problems and improvements of Tunnel Seismic Prediction in geological prediction of tunnels under high geotemperature and high in-situ geostress. Geophysical and Geochemical Exploration, 2022, 46(1): 268-274.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1167      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/268
Fig.1  TSP探测原理示意
高温不良地质 雅安至昌都段/km 昌都至林芝段/km 雅安至林芝段合计/km
Ⅰ轻微(28~37 ℃) 51.086 38.31 89.396
Ⅱ-1中等(37~50 ℃) 33.12 27.66 60.78
Ⅱ-2中等(50~60 ℃) 3.4 2.28 5.68
Ⅲ严重(>60 ℃) 2.0 1.41 3.41
37℃以上的段落合计 38.52 31.35 69.87
Table1  川藏铁路部分隧道高地温分布特征
Fig.2  川藏铁路雅安至新都桥段实测地应力点分布[21]
Fig.3  不同地应力条件节理岩体爆破裂纹传播试验
Fig.4  绝热保温袋起爆药包材料试验
[1] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017,37(2):123-134.
[1] Hong K R. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017,37(2):123-134.
[2] 钱七虎. 隧道工程建设地质预报及信息化技术的主要进展及发展方向[J]. 隧道建设, 2017,37(3):251-263.
[2] Qian Q H. Main developments and directions of geological prediction and informatized technology of tunnel construction[J]. Tunnel Construction, 2017,37(3):251-263.
[3] 王洪勇. 综合超前地质预报在圆梁山隧道中的应用[J]. 现代隧道技术, 2004,41(3):55-61.
[3] Wang H Y. Comprehensive advance geology prediction adopted in Yuanliangshan tunnel[J]. Modern Tunnelling Technology, 2004,41(3):55-61.
[4] 曲海锋, 刘志刚, 朱合华. 隧道信息化施工中综合超前地质预报技术[J]. 岩石力学与工程学报, 2006,25(6):1246-1251.
[4] Qu H F, Liu Z G, Zhu H H. Technique of synthetic geologyic prediction ahead in tunnel informational constuction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(6):1246-1251.
[5] 刘俊, 韩立军, 孟庆彬. TBM隧道综合超前地质预报及其在阳灵隧道的应用[J]. 山东大学学报:工学版, 2019,49(4):51-60.
[5] Liu J, Han L J, Meng Q B. TBM comprehensive advanced geological prediction in a tunnel and its application in Yangling Tunnel[J]. Jounal of Shandong University:Engineering Science, 2019,49(4):51-60.
[6] 刘阳飞. 超特长隧道综合超前地质预报工法研究与应用[D]. 成都:成都理工大学, 2016.
[6] Liu Y F. Comprehensive advanced geological prediction method for super long tunnel and its application[D]. Chengdu:Chengdu University of Technology, 2016.
[7] 徐志纬. 地应力实测对地下灾害的超前预报与分析[C]//北京:首届全国青年岩石力学学术研讨会论文集, 1991.
[7] Xu Z W. Advance forecast and analysis of underground disaster based on ground stress measurement[C]//Beijing:Proceedings of the First National Youth Symposium on Rock Mechanics, 1991.
[8] 刘高, 韩文峰, 李雪峰. 金川矿山围岩动态演化及其力学参数研究[J]. 岩石力学与工程学报, 2003,22(s2):2588-2594.
[8] Liu G, Han W F, Li X F. Dynamic evolution and mechanical parameters of surrounding rocks in Jinchuan Nickel mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(s2):2588-2594.
[9] 田家勇, 王恩福. 基于声弹理论的地应力超声测量方法[J]. 岩石力学与工程学报, 2006,25(s2):3719-3724.
[9] Tian J Y, Wang E F. Ultrasonic method for measuring in-situ stress based on acoustoelasticity theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(s2):3719-3724.
[10] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017,49(2):1-16.
[10] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 2017,49(2):1-16.
[11] 谢和平, 高峰, 鞠杨, 等. 深地科学领域的若干颠覆性技术构想和研究方向[J]. 工程科学与技术, 2017,49(1):1-8.
[11] Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth[J]. Advanced Engineering Sciences, 2017,49(1):1-8.
[12] 郑宗溪, 孙其清. 川藏铁路隧道工程[J]. 隧道建设, 2017,37(8):1049-1054.
[12] Zheng Z X, Sun Q Q. Sichuan-Tibet railway tunnel project[J]. Tunnel Construction, 2017,37(8):1049-1054.
[13] Lu C F, Cai C X. Challenges and countermeasures for construction safety during the Sichuan-Tibet railway project[J]. Engineering, 2019,5:833-838.
doi: 10.1016/j.eng.2019.06.007
[14] 刘金松. 川藏铁路高地温隧道施工关键技术研究[J]. 施工技术, 2018,47(1):100-102.
[14] Liu J S. Key construction technologies research on high geothermal tunnel on Sichuan-Tibet railway[J]. Construction Technology, 2018,47(1):100-102.
[15] 刘珣. 川藏铁路高地温隧道建设技术[J]. 铁道建筑, 2019,59(9):53-56.
[15] Liu X. Construction technology of tunnels in area of high geotemperature for Sichuan-Tibet railway[J]. Railway Engineering, 2019,59(9):53-56.
[16] 焦国锋. 拉萨—日喀则铁路吉沃西嘎隧道高地温预测[J]. 铁道建筑, 2013,53(7):74-76.
[16] Jiao G F. High geo-emperature prediction of Jivoxiga tunnel in Lhasa-Xigaze railway[J]. Railway Engineering, 2013,53(7):74-76.
[17] 中华人民共和国国家标准. GB 6722-2014爆破安全规程[S]. 北京: 中国标准出版社, 2014.
[17] National Standards of the People's Republic of China. GB 6722-2014 Safety Regulations for Blasting[S]. Beijing: China Standard Press, 2014.
[18] 中国铁路总公司. Q/RC 9217-2015铁路隧道超前地质预报技术规程[S]. 北京: 中国铁道出版社, 2015.
[18] China Railway Corporation. Q/RC 9217-2015 Technical Specification for Geolody Forecast of Railway Tunnel[S]. Beijing: China Railway Publishing House, 2015.
[19] 刘云祯. TGP隧道地震波预报系统与技术[J]. 物探与化探, 2009,33(2):170-177.
[19] Liu Y Z. TGP tunnel seismic wave forecast system and its technology[J]. Geophysical and Geochemical Exploration, 2009,33(2):170-177.
[20] 王凯. 基于模型正反演的TSP有效预报距离研究[J]. 铁道勘察, 2019,45(6):59-63.
[20] Wang K. Research on detection range of TSP method based on forward modeling and inversion[J]. Railway Investigation and Surveying, 2019,45(6):59-63.
[21] 任洋, 王栋, 李天斌, 等. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 2021,40(1):65-76.
[21] Ren Y, Wang D, Li T B, et al. In-situ geostress characteristics and engineering effect in Ya'an-Xinduqiao section of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40(1):65-76.
[22] Nicholls H R, Duvall W I. Pre-splitting rock in the presence of a static stress field [R]. U.S. Dept. of the Interior, Bureau of Mines, 1966.
[23] Simha K R Y, Fourney W L, Dick R D. Studies on explosively driven cracks under confining in-situ stresses:Rock Mechanics in Productivity and Protection[C]//Illinois:Proceedings of the Twenty-Fifth Symposium on Rock Mechanics. Evanston, 1984.
[24] 娄国充, 孙志涛, 满令聪. 三维地震波定向超前地质预报技术试验研究[J]. 岩石力学与工程学报, 2020,39(s1):2733-2740.
[24] Lou G C, Sun Z T, Man L C. Experimental research on 3D geological directional seismic prediction during tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2020,39(s1):2733-2740.
[25] 贺鹏, 李术才, 李利平, 等. 基于数据挖掘的隧道围岩变形响应预测与动态变更许可机制[J]. 岩石力学与工程学报, 2017,36(12):2940-2953.
[25] He P, Li S C, Li L P, et al. Prediction of deformation response in surrounding rock of tunnels and permit mechanism of dynamic change based on data mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,36(12):2940-2953.
[26] 汪旭, 孟露, 杨刚, 等. 隧道超前地质预报多源地震干涉法成像结果影响因素研究[J]. 现代隧道技术, 2019,56(5):58-66.
[26] Wang X, Meng L, Yang G, et al. On influencing factors of the tunnel geological prediction results obtained by multi-source seismic interferometry[J]. Modern Tunnelling Technology, 2019,56(5):58-66.
[27] 吴丰收, 李静, 花晓鸣, 等. 基于多源地震干涉法的隧道超前地质预报技术数值模拟研究[J]. 现代隧道技术, 2018,55(3):92-97.
[27] Wu F S, Li J, Hua X M, et al. Numerical simulation of advanced geological forecasting based on multi-source seismic interferometry[J]. Modern Tunnelling Technology, 2018,55(3):92-97.
[28] 刘斌, 李术才, 李建斌, 等. TBM掘进前方不良地质与岩体参数的综合获取方法[J]. 山东大学学报:工学版, 2016,46(6):105-112.
[28] Liu B, Li S C, Li J B, et al. Integrated acquisition method of adverse geology and rock properties ahead of tunnel face in TBM construction tunnel[J]. Journal of Shandong University:Engineeing Science, 2016,46(6):105-112.
[1] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[2] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5): 1275-1280.
[3] 范祥泰, 张志厚, 苏建坤, 丁可, 廖晓龙, 石泽玉, 刘鹏飞. 改进电测深法探测山区深埋隧道隐伏构造[J]. 物探与化探, 2021, 45(3): 793-799.
[4] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2): 480-489.
[5] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[6] 李俊杰, 徐庆强, 李剑强, 何建设, 郭佳豪. 千岛湖配水工程隧洞超前预报中的综合物探技术[J]. 物探与化探, 2019, 43(2): 428-434.
[7] 舒森, 王树栋, 李广, 吕志强, 曹强. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 2018, 42(6): 1311-1316.
[8] 高昕星, 赵斌, 路丽勇, 喻杰, 徐娅. 基于光纤电流传感的BEAM隧道超前地质预报方法[J]. 物探与化探, 2018, 42(2): 412-421.
[9] 卢贤锥. 探地雷达在铁路隧道检测中的应用[J]. 物探与化探, 2017, 41(4): 775-778.
[10] 莫婉玲, 孙中华, 徐娅, 赵斌. 界面极化电压的外推法测量研究[J]. 物探与化探, 2017, 41(3): 484-488.
[11] 侯伟, 杨正华. 负视速度超前预报倾斜界面位置确定[J]. 物探与化探, 2015, 39(5): 1089-1093.
[12] 李兆龙. 影响TSP203探测结果的若干问题探讨[J]. 物探与化探, 2015, 39(5): 1085-1088.
[13] 肖都, 李文杰, 郭鹏. 基于GPRMax的隧道衬砌检测数值模拟及应用[J]. 物探与化探, 2015, 39(4): 855-859.
[14] 林超群, 刘成禹, 林毅鹏, 刘汗青. TGP二维与三维地质预报成果对比[J]. 物探与化探, 2014, 38(6): 1235-1240,1245.
[15] 董茂干, 吴姗姗, 黄宁, 刘国辉. 探地雷达在南京地铁隧道工程检测中的应用[J]. 物探与化探, 2014, 38(5): 1090-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com