Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1183-1189    DOI: 10.11720/wtyht.2020.1606
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
TBM机施工隧道瞬变电磁超前探测研究
胡佳豪1(), 李貅1, 刘航2, 胡伟明1, 岳鑫1
1.长安大学 地质工程与测绘学院,陕西 西安 710061
2.中煤科工集团西安研究院有限公司,陕西 西安 710077
Research on the advanced detection of transient electromagnetic in tunnel construction by TBM
HU Jia-Hao1(), LI Xiu1, LIU Hang2, HU Wei-Ming1, YUE Xin1
1.College of Geological Engineering and Geomatics, Chang'an University , Xi'an 710061 , China
2.Xi'an Research Institute, China Coal Technology & Engineering Group Corp., Xi'an 710077 , China
全文: PDF(3160 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在隧道掘进机(TBM)施工隧道内,传统瞬变电磁的装置形式受到了TBM机械的限制,TBM自身的金属构件对二次场衰减电压的采集产生了强烈的电磁干扰。为了克服瞬变电磁法在TBM施工隧道内遇到的困难,在前人工作的基础上,尝试提出了一种基于电性源激发、电场分量采集的施工隧道瞬变电磁超前探测装置形式。针对钻爆法与TBM施工隧道各自不同的工况,利用三维时域有限差分法对单个电性源激励下隧道前方瞬变电磁场的分布规律与响应特征进行了正演模拟。通过对瞬变电磁场的分布规律以及响应特征进行分析,认为所述的电性源发射装置不仅可以在钻爆法施工隧道内使用,并且具有在TBM施工隧道内进行隧道超前预报的能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡佳豪
李貅
刘航
胡伟明
岳鑫
关键词 隧道超前预报TBM瞬变电磁法电性源电场分量采集    
Abstract

When the tunnel passes through the complex strata with bad geological development, it often encounters geological disasters such as water inrush, mud inrush, collapse and roof fall. During the construction of the tunnel, the advanced geological prediction for the adverse geological disasters such as water and mud inrush has become an important issue to ensure the construction safety. Transient electromagnetic method has been widely used in the prediction of tunnel and underground cavern construction period. However, with the increasingly complex construction environment, the application of traditional TEM is restricted by various factors. For example, in TBM construction tunnel, the traditional transient electromagnetic device form is limited by TBM machinery, and the metal components of TBM produce strong electromagnetic interference to the collection of secondary field attenuation voltage, which makes this kind of method difficult to apply to TBM construction tunnel at present. In order to overcome the difficulties encountered by TEM in TBM tunnel construction, the authors, based on previous work, attempted to put forward a type of TEM advanced detection device based on electrical source excitation and electric field component acquisition. According to the different working conditions of drilling and blasting method and TBM construction tunnel, the three-dimensional finite-difference time-domain method is used to simulate the distribution and response characteristics of transient electromagnetic field in front of the tunnel excited by a single electrical source. Based on the analysis of the distribution and response characteristics of transient electromagnetic field, the authors hold that the single electrical source launching device not only can be used in the tunnel construction by drilling and blasting but also has the capability of advanced prediction in the tunnel construction by TBM.

Key wordstunnel advance prediction    TBM    transient electromagnetic method    electrical source    electric field component acquisition
收稿日期: 2019-12-27      出版日期: 2020-10-26
:  P631  
基金资助:国家重点研发计划项目(2017YFC1502600);国家自然科学基金重点项目(41830101)
作者简介: 胡佳豪(1996- ),男,就读于长安大学地质工程与测绘学院地球物理系,硕士研究生,研究方向:瞬变电磁法。Email: hujiahao_pa@163.com
引用本文:   
胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
HU Jia-Hao, LI Xiu, LIU Hang, HU Wei-Ming, YUE Xin. Research on the advanced detection of transient electromagnetic in tunnel construction by TBM. Geophysical and Geochemical Exploration, 2020, 44(5): 1183-1189.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1606      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1183
Fig.1  FDTD计算采用的Yee晶胞格式
Fig.2  隧道模型示意
Fig.3  隧道掌子面发射源与接收点布设示意
Fig.4  TBM机计算模型
Fig.5  含TBM机的模型示意
Fig.6  关断后10 μs 隧道模型掌子面前方电场分布
Fig.7  关断后10 μs TBM机模型掌子面前方电场分布
Fig.8  隧道掌子面上观测点的电场ExEyEz分量衰减曲线对比(观测点见图3所示)
Fig.9  TBM机不同退刀距离下关断后10 μs后Ex分量在xOz平面上的分布
Fig.10  TBM机不同退刀距离下的Ex分量的衰减曲线(观测点见图3所示)
Fig.11  计算模型示意
Fig.12  TBM施工隧道含水断层距离隧道掌子面不同距离下Ex异常响应曲线(观测点见图3所示)
Fig.13  含水异常体距隧道掌子面15 m模型下的电场水平分量衰减曲线及视电阻率曲线
[1] 洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设, 2015,35(2):95-107.
doi: 10.3973/j.issn.1672-741X.2015.02.001
[1] Hong K R. Current situation and prospect of tunnel and underground engineering development in China[J]. Tunnel Construction, 2015,35(2):95-107.
doi: 10.3973/j.issn.1672-741X.2015.02.001
[2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012,31(10):1945-1956.
[2] Qian Q H. Challenges and countermeasures for safety of underground engineering construction[J]. Journal of Rock Mechanics and Engineering, 2012,31(10):1945-1956.
[3] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014,33(6):1090-1113.
[3] Li S C, Liu B, Sun H F, et al. State of art and trends of advanced geological prediction in tunnel contruction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(6):1090-1113.
[4] 赵永贵, 刘浩, 孙宇, 等. 隧道地质超前预报研究进展[J]. 地球物理学进展, 2003,18(3):460-464.
[4] Zhao Y G, Liu H, Sun Y, et al. Advance in advance prediction of tunnel geology[J]. Progress in Geophysics, 2003,18(3):460-464.
[5] 孙怀凤. 隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[J]. 岩石力学与工程学报, 2015,34(3):648.
doi: 10.13722/j.cnki.jrme.2015.03.024
[5] Sun H F. Three dimensional transient electromagnetic field response characteristics of tunnel water bearing structure and prediction of water inrush disaster source[J]. Journal of Rock Mechanics and Engineering, 2015,34(3):648.
[6] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008,51(3):894-900.
[6] Xue G Q, Li X. Advanced prediction imaging technology of TEM tunnel[J]. Journal of Geophysics, 2008,51(3):894-900.
[7] 孙怀凤. 隧道瞬变电磁三维探测[C]// 中国地球物理学会第二十七届年会论文集.中国地球物理学会, 2011.
[7] Sun H F. Three dimensional detection of transient electromagnetic in tunnel[C]// Proceedings of the 27th Annual Meeting of China Geophysical Society. China Geophysical Society, 2011.
[8] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
[8] Li X. Theory and application of TEM sounding [M]. Xi’an: Shaanxi Science and Technology Press, 2002.
[9] 陈卫营, 薛国强, 崔江伟. 电性源瞬变电磁发射源形变对观测结果影响分析[J]. 地球物理学进展, 2015,30(1):126-132.
doi: 10.6038/pg20150119
[9] Chen W Y, Xue G Q, Cui J W. Analysis of the influence of the deformation of the transient electromagnetic emission source of the electric source on the observation results[J]. Progress in Geophysics, 2015,30(1):126-132.
doi: 10.6038/pg20150119
[10] 卢绪山. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[D]. 西安:长安大学, 2014.
[10] Lu X S. Three dimensional parallel simulation of transient electromagnetic response of tunnel TBM and study of interference removal [D]. Xi'an: Chang’an University, 2014.
[11] 孙怀凤. 隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[D]. 济南:山东大学, 2013.
[11] Sun H F. Three dimensional transient electromagnetic response characteristics of tunnel water bearing structure and prediction of water inrush disaster source[D]. Jinan:Shandong University, 2013.
[12] 葛德彪, 闫玉波. 电磁波时域有限差分方法(第三版)[M]. 西安: 西安电子科技大学出版社, 2011.
[12] Ge D B, Yan Y B. Finite difference time domain method of electromagnetic wave (Third edition)[M]. Xi’an: Xi’an University of Electronic Science and Technology Press, 2011.
[13] Yee K S. Numerical solution of initial boundary value problems involving Maxwell’s equations[J]. IEEE Trans. Antennas Propag, 1966,14(3):302-307.
doi: 10.1109/TAP.1966.1138693
[14] 戚志鹏, 智庆全, 李貅, 等. 隧道瞬变电磁任意点垂直分量全域视电阻率解释方法[J]. 岩石力学与工程学报, 2015,34(7):1426-1434.
[14] Qi Z P, Zhi Q Q, Li X, et al. Interpretation method of global apparent resistivity of vertical component at any point of tunnel transient electromagnetic field[J]. Journal of Rock Mechanics and Engineering, 2015,34(7):1426-1434.
[15] 张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015,58(8):2745-2758.
[15] Zhang Y Y, Li X, Yao W H, et al. Definition of multicomponent global apparent resistivity of multi radiation field source ground air transient electromagnetic method[J]. Journal of Geophysics, 2015,58(8):2745-2758.
[1] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[2] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[3] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[4] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[5] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[6] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[7] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[8] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[9] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[10] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[11] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[12] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
[13] 黄威, 贲放, 李军峰, 殷长春, 胥值礼, 刘俊杰. 航空瞬变电磁数据背景场去除研究[J]. 物探与化探, 2020, 44(3): 672-676.
[14] 张文伟, 底青云, 耿启立, 雷达, 王中兴, 缪佳佳. 基于数字递归陷波的多通道瞬变电磁法周期噪声去除研究[J]. 物探与化探, 2020, 44(2): 278-289.
[15] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com