Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1132-1140    DOI: 10.11720/wtyht.2022.0043
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
基于主成分聚类法的典型黑土区土壤地球化学分类
刘凯1,2,3(), 戴慧敏1,2,3, 刘国栋1,2,3, 宋运红1,2,3, 梁帅1,2,3(), 杨泽1,2,3
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm
LIU Kai1,2,3(), DAI Hui-Min1,2,3, LIU Guo-Dong1,2,3, SONG Yun-Hong1,2,3, LIANG Shuai1,2,3(), YANG Ze1,2,3
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China
全文: PDF(4096 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤地球化学分类对农业区划和生态区划具有指导意义。本文基于多目标区域地球化学调查获取的土壤常量元素数据,利用主成分分析和K均值聚类组合方法——主成分聚类法,对东北典型黑土区进行地球化学分类研究。结果显示:成土母质是土壤常量元素特征的主要控制因素,利用主成分聚类法将典型黑土区土壤样品划分为5类最为合理,各类样品的常量元素含量具有显著性差异(P<0.05)。土壤地球化学分类结果与第四纪地质单元有一定的对应关系,而分类结果更能反映成土母质的真实分布情况。同时,松花江南部黑土区较高的SiO2含量指示了黑土的沙化生态问题,在黑土地保护中应给予重视。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凯
戴慧敏
刘国栋
宋运红
梁帅
杨泽
关键词 黑土区常量元素地球化学成土母质沙化    
Abstract

The geochemical classification of soils is significant for agricultural and ecological regionalization. Based on the data on major elements in soil obtained from the multi-purpose regional geochemical survey, this study conducted the geochemical classification for a typical black soil area in northeast China using the principal component analysis combined with the K-means clustering algorithm (also referred to as the principal component clustering method). The results are as follows. The soil parent materials are the main factor controlling the characteristics of major elements in the soil. It is the most appropriate to divide the soil samples from the typical black soil area into five categories using the principal component clustering method. Various samples had significantly different major element contents (P<0.05). The geochemical classification results corresponded to the Quaternary geological units to a certain degree and can better reflect the actual distribution of soil parent materials. Moreover, the high SiO2 content in the black soil area in the southern Songhua River indicates desertification, to which much attention should be paid in the protection of the black soil.

Key wordsblack soil area    major elements    geochemistry    parent material    desertification
收稿日期: 2022-01-31      修回日期: 2022-06-09      出版日期: 2022-10-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“东北黑土地1:25万土地质量地球化学调查”(121201007000161312);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 梁帅
作者简介: 刘凯(1989-),男,2014年毕业于吉林大学,主要从事生态地球化学研究工作。Email:liu.kai@mail.cgs.gov.cn
引用本文:   
刘凯, 戴慧敏, 刘国栋, 宋运红, 梁帅, 杨泽. 基于主成分聚类法的典型黑土区土壤地球化学分类[J]. 物探与化探, 2022, 46(5): 1132-1140.
LIU Kai, DAI Hui-Min, LIU Guo-Dong, SONG Yun-Hong, LIANG Shuai, YANG Ze. Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm. Geophysical and Geochemical Exploration, 2022, 46(5): 1132-1140.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0043      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1132
Fig.1  研究区区域位置(a)及土壤类型分布(b)
Fig.2  相关系数矩阵
类型 元素 最小值/% 最大值/% 平均值/% 中位数/% 标准偏差/% 偏度 峰度 变异系数
表层土壤 SiO2 41.87 80.46 64.55 64.80 2.95 -0.67 2.87 0.05
Al2O3 7.88 16.62 13.95 13.98 0.78 -0.59 2.95 0.06
Fe2O3 0.95 10.49 4.77 4.76 0.62 0.08 4.67 0.13
K2O 1.72 3.98 2.50 2.50 0.15 0.63 4.31 0.06
Na2O 0.72 4.66 1.62 1.56 0.29 1.82 6.44 0.18
CaO 0.55 15.03 1.56 1.39 0.82 6.25 57.76 0.53
MgO 0.21 3.50 1.29 1.30 0.21 0.24 3.21 0.17
深层土壤 SiO2 44.67 75.41 64.34 64.66 2.51 -0.36 3.10 0.04
Al2O3 9.01 18.50 14.79 14.89 0.80 -0.80 3.61 0.05
Fe2O3 1.38 9.08 5.12 5.16 0.78 -0.27 2.58 0.15
K2O 1.61 3.68 2.62 2.63 0.17 0.30 4.69 0.06
Na2O 0.53 3.66 1.67 1.64 0.28 1.38 5.60 0.17
CaO 0.35 15.41 1.41 1.25 0.66 4.30 28.73 0.47
MgO 0.36 3.09 1.37 1.40 0.24 -0.37 2.92 0.17
Table 1  黑土区常量元素参数统计
Fig.3  常量元素富集系数箱线图
Fig.4  东北黑土区常量元素含量空间分布(各元素含量区间取值为四分位数,数据单位为%)
主成分 初始特征值 提取载荷平方和
总计 方差百
分比
累积贡
献率/%
总计 方差百
分比
累积贡
献率/%
PC1 3.270 46.708 46.708 3.270 46.708 46.708
PC2 1.474 21.056 67.764 1.474 21.056 67.764
PC3 1.070 15.289 83.053 1.070 15.289 83.053
Table 2  主成分特征值及方差贡献率
Fig.5  主成分分析得分
Fig.6  不同分类数及对应的平均轮廓系数
类别 样品数 SiO2 Al2O3 Fe2O3 CaO K2O MgO Na2O
I类 18 56.15 14.37 6.16 3.06 2.90 3.63 2.19
II类 6512 64.66 13.59 4.87 1.26 2.39 1.21 1.45
III类 10023 63.07 14.46 5.19 1.57 2.50 1.45 1.54
IV类 778 59.24 12.86 4.39 5.04 2.35 1.70 1.66
V类 5557 66.75 13.51 4.24 1.38 2.65 1.18 1.94
Table 3  各类别样品常量元素平均值统计
Fig.7  样品类别空间分布
Fig.8  典型黑土区第四纪地质
Fig.9  不同类别所包含地质单元的累积频率
[1] 李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.
doi: 10.13745/j.esf.sf.2019.8.25
[1] Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6):128-158.
doi: 10.13745/j.esf.sf.2019.8.25
[2] 戴慧敏, 赵君, 刘国栋, 等. 东北黑土地质量调查成果[J]. 地质与资源, 2020, 29(3):299.
[2] Dai H M, Zhao J, Liu G D, et al. Progress in the quality survey of black soil in northeast China[J]. Geology and Resources, 2020, 29(3):299.
[3] 戴慧敏, 刘驰, 宫传东, 等. 东北平原土壤碳库构成及其与土壤性质的关系[J]. 第四纪研究, 2013, 33(5):986-994.
[3] Dai H M, Liu C, Gong C D, et al. Soil carbon pool in northeast plain of China and its relations between the soil properties[J]. Quaternary Sciences, 2013, 33(5):986-994.
[4] 刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2):443-454.
[4] Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2):443-454.
[5] 刘国栋, 李禄军, 戴慧敏, 等. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5):1109-1120.
[5] Liu G D, Li L J, Dai H M, et al. Change in soil carbon pool in Sonlgiao Plain and its cause analysis[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1109-1120.
[6] 刘国栋, 杨泽, 戴慧敏, 等. 黑龙江省海伦市长发镇土地质量地球化学评价及开发建议[J]. 地质与资源, 2020, 29(6):533-542.
[6] Liu G D, Yang Z, Dai H M, et al. Geochemical evaluation of land quality and development suggestion of land in Hailun city,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):533-542.
[7] 刘凯, 杜守营, 戴慧敏, 等. 黑龙江省五常市东部土壤中硒分布及影响因素[J]. 地质与资源, 2020, 29(6):597-602.
[7] Liu K, Du S Y, Dai H M, et al. Selenium distribution and influencing factors of soil in eastern Wuchang City,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):597-602.
[8] 宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 29(6):543-549.
[8] Song Y H, Zhang Z H, Yang F C, et al. Vertical distribution of major nutrient elements in typical black soil sections in Hailun,Heilongjiang Province:Before and after reclamation[J]. Geology and Resources, 2020, 29(6):543-549.
[9] 李国刚, 胡邦琦, 李军, 等. 山东半岛沿岸海域表层沉积物的常量元素及其地质意义[J]. 海洋地质与第四纪地质, 2012, 32(3):45-54.
[9] Li G G, Hu B Q, Li J, et al. Geochemistry of major elements in the surface sediments of the offshore area of Shandong Peninsula and its geological implications[J]. Marine Geology and Quaternary Geology, 2012, 32(3):45-54.
doi: 10.3724/SP.J.1140.2012.03045
[10] Kumaravel V, Sangode S J, Siddaiah N S, et al. Major element geochemical variations in a Miocene-Pliocene Siwalik paleosol sequence:Implications to soil forming processes in the Himalayan foreland basin[J]. Journal of the Geological Society of India, 2009, 73(6):759-772.
doi: 10.1007/s12594-009-0061-5
[11] Du J, Luo Y, Zhang W, et al. Major element geochemistry of purple soils/rocks in the red Sichuan Basin,China:Implications of their diagenesis and pedogenesis[J]. Environmental Earth Sciences, 2013, 69(6):1831-1844.
doi: 10.1007/s12665-012-2019-y
[12] Veronica M N J, Georgesivc E E. A comparative analyses of granulometry,mineral composition and major and trace element concentrations in soils commonly ingested by humans[J]. International Journal of Environmental Research and Public Health, 2015, 12(8):8933-8955.
doi: 10.3390/ijerph120808933
[13] Aldis M, Aherne J. Exploratory analysis of geochemical data and inference of soil minerals at sites across Canada[J]. Mathematical Geosciences, 2021, 53:1201-1221.
doi: 10.1007/s11004-020-09912-y
[14] Hossein T, Farhad K, Arash A, et al. Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh,North East Iran[J]. Journal of Geochemical Exploration, 2018, 194:52-70.
doi: 10.1016/j.gexplo.2018.07.008
[15] Hassan T, Ute M, Raimon T D, et al. Surficial and deep earth material prediction from geochemical compositions[J]. Natural Resources Research, 2018, 28:869-892.
doi: 10.1007/s11053-018-9423-2
[16] Wang J, Zuo R G, Caers J. Discovering geochemical patterns by factor-based cluster analysis[J]. Journal of Geochemical Exploration, 2017, 81:106-115.
[17] Jan S, Radim V, Jarmilac, et al. Regional geochemical zonation of cultivated floodplains-Application of multi-element associations for soil quality evaluation along the Ohǐe (Eger) River,Czech Republic[J]. Journal of Geochemical Exploration, 2020, 212:106491.
doi: 10.1016/j.gexplo.2020.106491
[18] 陈加兵, 曾从盛. 主成分分析、聚类分析在土地评价中的应用——以福建沙县夏茂镇水稻土为主要评价对象[J]. 土壤, 2001, 33(5):243-246,256.
[18] Chen J B, Zeng C S. Application of principle component analysis and hierarchical cluster analysis in land evaluation[J]. Soil, 2001, 13(5):243-246,256.
[19] 王同兴, 郭骏杰, 王强. 基于K均值动态聚类分析的土样识别[J]. 建筑科学, 2010, 26(7):52-56,71.
[19] Wang T X, Guo J J, Wang Q. The recognition of soil sample based on the K-means dynamic clustering analysis[J]. Building Science, 2010, 26(7):52-56,71.
[20] 郭燕, 田延峰, 吴宏海, 等. 基于多源数据和模糊k-均值方法的农田土壤管理分区研究[J]. 土壤学报, 2013, 50(3):441-447.
[20] Guo Y, Tian Y F, Wu H H, et al. Zoning of soil management based on multi-sources data and fuzzy-K means[J]. Acta Pedologica Sinica, 2013, 50(3):441-447.
[21] 赵玉明, 程立平, 梁亚红, 等. 东北黑土区演化历程及范围界定研究[J]. 土壤通报, 2019, 50(4):765-775.
[21] Zhao Y M, Cheng L P, Liang Y H, et al. Developing history and defining boundary of the black soil regions in Northeast China[J]. Chinese Journal of Soil Science, 2019, 50(4):765-775.
[22] 刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界[J]. 科学通报, 2021, 66(1):96-106.
[22] Liu B Y, Zhang G L, Xie Y, et al. Delineating the black soil region and typical black soil region of northeastern China[J]. Chinese Science Bulletin, 2021, 66(1):96-106.
[23] 中国科学院林业土壤研究所. 中国东北土壤[M]. 北京: 科学出版社,1980.
[23] Institute of forestry and soil,Chinese Academy of Sciences. Soil in Northeast China[M]. Beijing: Science Press,1980.
[24] 中华人民共和国国土资源部. DZ/T 0258—2014 多目标区域地球化学调查规范(1:250 000)[S]. 北京: 中国标准出版社, 2015.
[24] Ministry of Land and Resources of the People’s Republic of China. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey(1:250 000)[S]. Beijing: China Standard Press, 2015.
[25] Clemens R, Peter F, Karl F, et al. The concept of compositional data analysis in practice:Total major element concentrations in agricultural and grazing land soils of Europe[J]. Science of the Total Environment, 2012, 426:196-210.
doi: 10.1016/j.scitotenv.2012.02.032
[26] Macqueen J. Some methods for classification and analysis of multivariate observations[C]// Proc of Berkeley Symposium on Mathematical Statistics & Probability, 1965.
[27] 冯波, 郝文宁, 陈刚, 等. K-means算法初始聚类中心选择的优化[J]. 计算机工程与应用, 2013, 49(14):182-185,192.
[27] Feng B, Hao W N, Chen G, et al. Optimization to K-means initial cluster centers[J]. Computer Engineering and Applications, 2013, 49(14):182-185,192.
[28] 安光辉, 马蓉, 陈伟, 等. 基于K-均值聚类的绿洲农田管理分区提取的研究[J]. 石河子大学学报:自然科学版, 2011, 29(6):757-761.
[28] An G H, Ma R, Chen W, et al. Delineation of precision agriculture management zones in oasis field based on K-means algorithm[J]. Journal of Shihezi University:Natural Science, 2011, 29(6):757-761.
[29] Rousseuw P J. Sihouettes:A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65.
doi: 10.1016/0377-0427(87)90125-7
[30] 张明, 陈国光, 高超, 等. 华东多目标区域地球化学调查区土壤常量元素地球化学特征[J]. 吉林大学学报:地球科学版, 2014, 44(3):995-1002.
[30] Zhang M, Chen G G, Gao C, et al. Geochemical characteristics of macro elements in soils in the region covered by multi-purpose geochemical survey in Eastern China[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(3):995-1002.
[31] Michael D, Paul D, Andreas S, et al. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland[J]. Journal of Maps, 2013, 9(3):373-389.
doi: 10.1080/17445647.2013.789414
[32] Sandra B, Efren G O, Francisco J G N, et al. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain):Finding criteria for baselines and delimiting regional anomalies[J]. Environmental Science and Pollution Research, 2017, 26(4):3100-3114.
doi: 10.1007/s11356-017-0010-6
[33] Drew L J, Grunsky E C, Sutphin D M, et al. Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America[J]. Science of the Total Environment, 2010, 409(1):218-227.
doi: 10.1016/j.scitotenv.2010.08.004
[34] 韩晓萌, 戴慧敏, 梁帅, 等. 黑龙江省拜泉地区典型黑土剖面元素地球化学特征及其环境指示意义[J]. 地质与资源, 2020, 29(6):556-563.
[34] Han X M, Dai H M, Liang S, et al. Element geochemistry of the typical black soil sections in Baiquan area,Heilongjiang Province:Environmental implication[J]. Geology and Resources, 2020, 29(6):556-563.
[35] Chipres J A, Calleja A D L, Tellez J I, et al. Geochemistry of soils along a transect from Central Mexico to the Pacific Coast:A pilot study for continental-scale geochemical mapping[J]. Applied Geochemistry, 2009, 24(8):1416-1428.
doi: 10.1016/j.apgeochem.2009.04.012
[36] Wilson M J. The importance of parent material in soil classification:A review in a historical context[J]. Catena, 2019, 182:104-131.
[37] Fabian E G, Jasmin B, Volkmar M, et al. From geological to soil parent material maps:A random forest-supported analysis of geological map units and topography to support soil survey in South Tyrol[J]. Geoderma, 2019, 354:113884.
doi: 10.1016/j.geoderma.2019.113884
[38] Rudolph S M, Justin B R. Investigating surficial geologic controls on soil properties,inorganic nutrient uptake,and northern hardwood growth in Western Massachusetts,USA[J]. Journal of Soil Science and Plant Nutrition, 2020, 20:19-20.
doi: 10.1007/s42729-019-00096-x
[39] 杨雪艳, 张丽, 袭祝香, 等. 东北地区春季沙尘天气变化特征及其与大气环流变化的关系[J]. 气象与环境学报, 2018, 34(4):75-83.
[39] Yang X Y, Zhang L, Qiu Z X, et al. Characteristics of sand-dust events and their relationships with atmospheric circulation in spring in Northeast China[J]. Journal of Meteorology and Environment, 2018, 34(4):75-83.
[40] 袁方, 谢远云, 迟云平. 哈尔滨尘暴天气沉降物的物质组成及其对物源的限制[J]. 中国地质, 2018, 45(6):1177-1187.
[40] Yuan F, Xie Y Y, Chi Y P. Material charateristics of dust fallouts during the dust-storm weather in Harbin:Constraint on the provenance[J]. Geology in China, 2018, 45(6):1177-1187.
[41] 谢远云, 孟杰, 郭令芬, 等. 哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析[J]. 地球科学:中国地质大学学报, 2013, 38(5):923-933.
[41] Xie Y Y, Meng J, Guo L F, et al. REE Geochemistry for sand-dust fallouts in Harbin,Heilongjiang Province and provenance analysis[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5):923-933.
doi: 10.3799/dqkx.2013.091
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[3] 郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
[4] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[5] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[6] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[7] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[8] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[9] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[10] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[11] 陈熙, 安朝, 张文权, 徐云甫, 马瑛, 史连昌, 陶志华. 柴北缘中段地球化学特征及铬的成矿潜力评价[J]. 物探与化探, 2023, 47(2): 353-364.
[12] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[13] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[14] 肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
[15] 吴发富, 刘江涛, 王建雄, 胡鹏, 程湘, 李福林, 赵凯, 曾国平, 王成刚, 向鹏. 摩洛哥地球化学景观划分[J]. 物探与化探, 2023, 47(1): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com