Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1251-1260    DOI: 10.11720/wtyht.2025.0345
  综述 本期目录 | 过刊浏览 | 高级检索 |
磁铁矿矿致磁异常测定方法及其应用
范正国1(), 杨海1,2,3, 葛藤菲1,2, 何敬梓1,2(), 贾志业1, 范振宇1,2, 刘前坤1, 杨雪1
1.中国自然资源航空物探遥感中心, 北京 100083
2.自然资源部航空地球物理与遥感地质重点实验室, 北京 100083
3.中国科学院 地质与地球物理研究所, 北京 100029
A novel method for determining magnetite ore-induced magnetic anomalies and its application
FAN Zheng-Guo1(), YANG Hai1,2,3, GE Teng-Fei1,2, HE Jing-Zi1,2(), JIA Zhi-Ye1, FAN Zhen-Yu1,2, LIU Qian-Kun1, YANG Xue1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
全文: PDF(3280 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确、快速地确定磁异常源的地质属性是磁法勘探的关键技术之一,直接影响到利用磁测数据开展地质解释的准确性。感应磁化强度随时间变化,剩余磁化强度一般不随时间变化,因此,理论上可以通过探测磁异常强度随时间变化特征来研究磁异常场源体性质。虽然前人开展过相关研究,但目前尚未形成实用的技术方法。本文提出利用地磁日变观测数据,构建磁异常强度变化量A参数、磁异常强度变化率η参数和归一化磁异常强度变化量F参数来评估强磁异常场源体性质,确定磁异常是否为磁铁矿引起的新方法,该方法对磁铁矿勘探具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范正国
杨海
葛藤菲
何敬梓
贾志业
范振宇
刘前坤
杨雪
关键词 磁法勘探感应磁化强度剩余磁化强度矿致异常地磁日变磁铁矿磁异常强度变化量    
Abstract

Accurately and quickly determining the geological properties related to magnetic anomaly sources is a key technical challenge in magnetic prospecting, directly influencing the accuracy of geological interpretation using magnetic survey data. The induced magnetization varies with time, whereas the remanent magnetization typically remains constant over time. Therefore, there exists a theoretical basis for investigating the properties of magnetic anomaly source bodies by detecting the time variations of magnetic anomaly intensity. Despite geophysicists' relevant research in this field, practical technical methods have not been established. Hence, this study proposed a novel method for determining magnetite ore-induced magnetic anomalies. Based on the observational data of geomagnetic diurnal variations, the proposed method constructed parameters, including the variations (A), variation rate (η), and normalized variations (F) of magnetic anomaly intensity, to evaluate the properties of strong magnetic anomaly source bodies. Accordingly, the proposed method determined the possibility of magnetite ore-induced magnetic anomalies, showing critical significance for magnetite exploration.

Key wordsmagnetic prospecting    induced magnetization    remanent magnetization    ore-induced anomaly    geomagnetic diurnal variation    magnetite    variation of magnetic anomaly intensity
收稿日期: 2025-09-16      修回日期: 2025-10-14      出版日期: 2025-12-20
ZTFLH:  P631.1  
基金资助:国家重点研发计划项目“低缓磁异常弱信息提取与富铁矿体定位技术示范”(2022YFC2903704);省部合作项目(2024ZRBSHZ132-2);中国地质调查局地质调查项目(DD20240119);中国地质调查局地质调查项目(DD20243245)
通讯作者: 何敬梓
引用本文:   
范正国, 杨海, 葛藤菲, 何敬梓, 贾志业, 范振宇, 刘前坤, 杨雪. 磁铁矿矿致磁异常测定方法及其应用[J]. 物探与化探, 2025, 49(6): 1251-1260.
FAN Zheng-Guo, YANG Hai, GE Teng-Fei, HE Jing-Zi, JIA Zhi-Ye, FAN Zhen-Yu, LIU Qian-Kun, YANG Xue. A novel method for determining magnetite ore-induced magnetic anomalies and its application. Geophysical and Geochemical Exploration, 2025, 49(6): 1251-1260.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0345      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1251
Fig.1  山东省平阴地区地磁场随时间变化曲线(据参考文献[25])
Fig.2  山东省邹平—金岭地区大地构造位置图(a)(据文献[30-31]改)和区域地质简图(b)(据文献[37]改)
异常区 异常名称 地质属性 κ/10-5 SI Mr/(A·m-1) Q 异常强度/nT 资料来源
金岭磁异常区 王旺庄 磁铁矿 31416~565487 3.63~7.30 0.01~0.52 -1075~1520 参考文献[42-43]
侯家庄 磁铁矿 -810~880
北金召 磁铁矿 -750~1518
闪长岩 143~843 0.1~7.14 0.21~112.15
邹平磁异常区 孟白庄 火山岩 2513~25133 20~40 35.7~178 -1250~2490 参考文献[36,42]
Table 1  邹平磁异常区和金岭磁异常区磁性特征及异常强度
Fig.3  山东省邹平—金岭地区航磁ΔT等值线及磁日变站分布示意
异常名称 地质属性 地磁场强度/nT 观测点异常值/nT 背景站磁场
变化幅度/nT
异常站磁场
变化幅度/nT
A/nT η/% F
王旺庄 磁铁矿 52850 824.8 35.62 36.11 0.49 1.38 0.88
侯家庄 磁铁矿 52850 -184.3 44.43 44.29 -0.14 -0.32 0.91
北金召 磁铁矿 52850 481.7 34.91 35.12 0.21 0.60 0.66
孟白庄 火山岩 52850 979.0 38.28 38.60 0.32 0.85 0.45
Table 2  孟白庄、王旺庄、侯家庄和北金召4处磁异常的测量数据处理结果
Fig.4  孟白庄磁异常背景日变站(Tb)和异常日变站(Ta)磁日变曲线
Fig.5  王旺庄磁异常背景日变站(Tb)和异常日变站(Ta)磁日变曲线及总噪声(S)
Fig.6  侯家庄磁异常背景日变站(Tb)和异常日变站(Ta)磁日变曲线
异常名称 地质属性 κ/(10-5 ·SI) Mr/(A·m-1) Q A/nT η/% 资料来源
美国某地 磁铁矿 >30 参考文献[13]
美国西部A 磁铁矿 75398 0.06~0.07 0.035 3.5~7.0 参考文献[14]
美国西部B 磁铁矿 125664 0.06~0.07 0.20 20~40 参考文献[14]
美国西部C 火山岩 200 很小 参考文献[14]
小兴安岭 火山岩 很小 参考文献[17]
Table 3  磁异常强度变化量A值及磁异常强度变化率η
[1] 姚培慧. 中国铁矿志探[M]. 北京: 冶金工业, 1993.
[1] Yao P H. Records of China's iron ore deposits探[M]. Beijing: Metallurgical Industry Press, 1993.
[2] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[2] Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.
[3] 刘士毅, 田黔宁, 赵金水, 等. 解决物探异常解释多解性的一次尝试[J]. 物探与化探, 2010, 34(6):691-696.
[3] Liu S Y, Tian Q N, Zhao J S, et al. An attempt to reduce ambiguity in geophysical interpretation[J]. Geophysical and Geochemical Exploration, 2010, 34(6):691-696.
[4] 范正国, 黄旭钊, 熊盛青, 等. 磁测资料应用技术要求[M]. 北京: 地质出版社, 2010.
[4] Fan Z G, Huang X Z, Xiong S Q, et al. Technical requirements for application of magnetic survey data[M]. Beijing: Geological Publishing House, 2010.
[5] 熊盛青, 徐学义. 航空地球物理在战略性矿产勘查中的应用前景[J]. 地球科学与环境学报, 2023, 45(2):143-156.
[5] Xiong S Q, Xu X Y. Application prospect of aerogeophysics in strategic mineral exploration[J]. Journal of Earth Sciences and Environment, 2023, 45(2):143-156.
[6] Prasad K N D, Patel V C, Bansal A R, et al. New insights into the crustal magnetization of the eastern Indian shield inferred from the aeromagnetic data-based depth to the bottom of the magnetic sources (DBMS)[J]. Journal of Asian Earth Sciences, 2023, 245:105544.
[7] Naveen P U, Sathapathy S K, Giri Y, et al. Crustal structure across the central part of Narmada-Son Lineament,India based on the interpretation of aeromagnetic and gravity data:Geological implications[J]. Journal of Asian Earth Sciences, 2023, 255:105765.
[8] 范正国, 周道卿. 航磁异常找矿案例[M]. 北京: 地质出版社, 2015.
[8] Fan Z G, Zhou D Q. Case study of aeromagnetic anomaly prospecting[M]. Beijing: Geological Publishing House, 2015.
[9] 范正国, 余学中, 赵廷严, 等. 秦岭及天山等重点成矿区带航空物探调查成果报告[R]. 中国自然资源航空物探遥感中心, 2019.
[9] Fan Z G, Yu X Z, Zhao T Y, et al. Aerial geophysical survey of key mineralization belts such as Qinling and Tianshan Mountains[R]. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 2019.
[10] 孟贵祥, 严加永, 吕庆田, 等. 邯邢式铁矿深部探测技术及综合找矿模式研究——以河北省沙河市白涧铁矿床为例[J]. 矿床地质, 2009, 28(4):493-502.
[10] Meng G X, Yan J Y, Lyu Q T, et al. Application of deep detecting technology in Hanxing subtype iron deposits and an integrated prospecting model:A case study of Baijian iron deposit[J]. Mineral Deposits, 2009, 28(4):493-502.
[11] 吴成平, 于长春, 张迪硕, 等. 厚覆盖区磁铁矿空—地—井协同勘查技术体系[J]. 地质通报, 2025, 44(6):1164-1173.
[11] Wu C P, Yu C C, Zhang D S, et al. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden[J]. Geological Bulletin of China, 2025, 44(6):1164-1173.
[12] 朱裕振, 孙超, 王怀洪, 等. 基于反射波地震勘探技术的深覆盖区矽卡岩型富铁矿找矿方法探讨[J/OL]. 地学前缘, 2025:1-12(2025-03-18).https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.
[12] Zhu Y Z, Sun C, Wang H H, et al. Discussion on prospecting methods for rich iron ore in deep coverage areas based on reflected wave seismic exploration technology[J/OL]. Earth Science Frontiers, 2025:1-12(2025-03-18).https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.
[13] Ward S H, Ruddock K A. A field experiment with a rubidium-vapor magnetometer[J]. Journal of Geophysical Research, 1962, 67(5):1889-1898.
[14] Goldstein N E, Ward S H. The separation of remanent from induced magnetism in situ[J]. 1966, 31(4):779-796.
[15] Clark D A, Huddleston M P, Schmidt P W, et al. Remote determination of magnetic properties and improved drill targeting of magnetic anomaly sources by differential vector magnetometry (DVM)[J]. Exploration Geophysics, 1998, 29(3-4):312-319.
[16] 孙文珂. 关于铁矿物探工作的几点建议[EB/OL].(2008)[2024-10-13] https://www.crcmlr.org.cn/results_zw.aspnewId.
[16] Sun W K. Some suggestions on geophysical exploration of iron minerals[EB/OL].(2008) [2024-10-13] https://www.crcmlr.org.cn/results_zw.aspnewId.
[17] 张昌达, 董浩斌. 磁异常解释中的剩余磁化问题[J]. 物探与化探, 2011, 35(1):1-6.
[17] Zhang C D, Dong H B. Remanent magnetization in the interpretation of magnetic anomaly[J]. Geophysical and Geochemical Exploration, 2011, 35(1):1-6.
[18] 申宁华, 管志宁. 磁法勘探问题[M]. 北京: 地质出版社, 1985.
[18] Shen N H, Guan Z N. Magnetic prospecting problem[M]. Beijing: Geological Publishing House, 1985.
[19] 李才明, 李军, 余舟, 等. 提高磁测日变改正精度的方法[J]. 物探化探计算技术, 2004, 26(3):211-214.
[19] Li C M, Li J, Yu Z, et al. The method of increasing precision of diurnalcorrection in high-precision magnetic survey[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(3):211-214.
[20] 徐东礼, 范正国, 舒晴, 等. 两种典型磁扰对航空磁测的影响[J]. 物探与化探, 2015, 39(2):362-365.
[20] Xu D L, Fan Z G, Shu Q, et al. The influence of two typical kinds of magnetic disturbance on the airborne magnetic survey[J]. Geophysical and Geochemical Exploration, 2015, 39(2):362-365.
[21] 罗开奇. 地球磁场的变化及磁暴现象的原因分析[J]. 科技创新与应用, 2017(32):23-24.
[21] Luo K Q. Changes of earth’s magnetic field and cause analysis of magnetic storm phenomenon[J]. Technology Innovation and Application, 2017(32):23-24.
[22] 李义红, 刘代志, 卢世坤, 等. 电离层与地磁场时空变化特性分析与建模[M]. 西安: 西北工业大学出版社, 2021.
[22] Li Y H, Liu D Z, Lu S K, et al. Analysis and modeling of temporal and spatial variation characteristics of ionosphere and geomagnetic field[M]. Xi’an: Northwestern Polytechnical University Press, 2021.
[23] 张雨欣. 地磁日变规律以及日变值计算方法研究[D]. 北京: 中国地质大学(北京), 2021.
[23] Zhang Y X. Research on geomagnetic diurnal variation patterns and the calculation method of diurnal variation[D]. Beijing: China University of Geosciences(Beijing), 2021.
[24] 康世奇. 地磁日变数据特征分析及预测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.
[24] Kang S Q. Research on characteristics analysis and prediction techniques of geomagnetic daily variation data[D]. Harbin: Harbin Institute of Technology, 2023.
[25] 徐东礼, 邓茂盛, 王宁, 等. 重、 山东齐河—禹城地区1∶5万航空物探(磁)测量成果报告[R]. 中国自然资源航空物探遥感中心, 2017.
[25] Xu D L, Deng M S, Wang N, et al. 1∶50000 aerial geophysical (gravimetric and magnetic) survey in Qihe-Yucheng area,Shandong Province[R]. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 2017.
[26] 中华人民共和国地质矿产部. 地面高精度磁测技术规程:DZ/T0071—1993[S]. 北京: 中国标准出版社, 1993.
[26] Ministry of Geology and Mineral Resources of the People’s Republic of China. [S]. China Standard Press, 1993.
[27] 中华人民共和国国土资源部. 航空磁测技术规范:DZ/T0142—2010[S]. 北京: 中国标准出版社, 2010.
[27] Ministry of Land and Resources of the People’s Republic of China. Criterionofaeromagneticsurvey:DZ/T0142—2010[S]. Beijing: Standards Press of China, 2010.
[28] 范正国, 杨海, 葛藤菲, 等. 一种铁矿矿致磁异常测定的方法和设备:CN119805591B[P].2025-08-08.
[28] Fan Z G, Yang H, Ge T F, et al. Method and equipment for determining ore-induced magnetism anomaly of iron ore:CN119805591B[P].2025-08-08.
[29] 张超, 崔芳华, 张照录, 等. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报:地球科学版, 2017, 47(6):1732-1745.
[29] Zhang C, Cui F H, Zhang Z L, et al. Petrogenesis of ore-bearing dioritic pluton in jinling area in western Shandong:Evidence from zircon U-Pb chronology and petro-geochemistry[J]. Journal of Jilin University:Earth Science Edition, 2017, 47(6):1732-1745.
[30] Xie Q H, Zhang Z C, Hou T, et al. Petrogenesis of the zhangmatun gabbro in the ji’nan complex,North China Craton:Implications for skarn-type iron mineralization[J]. Journal of Asian Earth Sciences, 2015, 113:1197-1217.
[31] 张保涛, 梅贞华, 李秀章, 等. 华北克拉通矽卡岩型富铁矿成矿关键控制因素:来自地层学的制约[J]. 现代地质, 2024, 38(1):98-116.
[31] Zhang B T, Mei Z H, Li X Z, et al. Key ore-controlling factors of the skarn type high-grade iron deposits in North China Craton:Constraints from stratigraphy[J]. Geoscience, 2024, 38(1):98-116.
[32] 郭军, 黄小龙, 贺鹏丽, 等. 鲁西地区中生代高镁闪长岩角闪石成分变化特征及其对矽卡岩型铁矿成矿作用的启示[J]. 大地构造与成矿学, 2024, 48(4):800-819.
[32] Guo J, Huang X L, He P L, et al. Compositional variations of amphiboles from Mesozoic high-Mg diorite in western Shandong:Implications for the mineralization of skarn-type iron deposits[J]. Geotectonica et Metallogenia, 2024, 48(4):800-819.
[33] Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy and Petrology, 2004, 147(6):750-767.
[34] Huang X L, Zhong J W, Xu Y G. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton:Insights from Early Cretaceous mafic intrusions in western Shandong,East China[J]. Geochimica et Cosmochimica Acta, 2012, 96:193-214.
[35] Jin Z L, Zhang Z C, Hou T, et al. Genetic relationship of high-Mg dioritic pluton to iron mineralization:A case study from the Jinling skarn-type iron deposit in the North China Craton[J]. Journal of Asian Earth Sciences, 2015, 113:957-979.
[36] 杨鹤鸣, 姚正煦, 董美莉. 山东中部及东部地区航空物探(磁及放射性)工作结果报告[R]. 中华人民共和国地质部地球物理探矿局航测大队902队, 1960.
[36] Yang H M, Yao Z X,Dong, M L. Aerogeophysical (magnetic and radiometric) survey results in central and eastern Shandong Province[R]. Aero Survey Brigade 902 Team,Geophysical Prospecting Bureau,Ministry of Geology,People's Republic of China, 1960.
[37] 杨承海, 许文良, 杨德彬, 等. 鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据[J]. 地球科学, 2006, 31(1):81-92.
[37] Yang C H, Xu W L, Yang D B, et al. Petrogenesis of the Mesozoic high-Mg diorites in west Shandong:Evidence from chronology and petro-geochemistry[J]. Earth Science, 2006, 31(1):81-92.
[38] 金子梁. 矽卡岩型富铁矿成因研究——以鲁西淄博和莱芜铁矿为例[D]. 北京: 中国地质大学(北京), 2017.
[38] Jin Z L. Genesis of high-grade Fe skarns[D]. Beijing: China University of Geosciences, 2017.
[39] 张保涛, 胡兆国, 梅贞华, 等. 山东淄博金岭地区辛庄铁矿地质地球物理特征及深部找矿预测[J]. 地质论评, 2022, 68(6):2259-2268.
[39] Zhang B T, Hu Z G, Mei Z H, et al. Geological and geophysical characteristics and deep prospecting prediction of Xinzhuang iron deposit in Jinling area,Zibo,Shandong[J]. Geological Review, 2022, 68(6):2259-2268.
[40] 张保涛, 胡兆国, 曹其琛, 等. 山东淄博金岭杂岩体分布区深部富铁矿资源潜力及找矿方向[J]. 地质学报, 2021, 95(5):1545-1560.
[40] Zhang B T, Hu Z G, Cao Q C, et al. Iron-rich ore exploration potential and favorable sites for deep horizon of Jinling magmatic complex distribution in Zibo,Shandong Province[J]. Acta Geologica Sinica, 2021, 95(5):1545-1560.
[41] 郝兴中, 王巧云. 鲁中隆起区中北部矽卡岩型铁矿成矿预测[J]. 地质学刊, 2016, 40(3):443-449.
[41] Hao X Z, Wang Q Y. Metallogenic prediction of skarn iron deposits in the central and northern Luzhong uplift,East China[J]. Journal of Geology, 2016, 40(3):443-449.
[42] 张文俊, 金国, 陈京元, 等. 鲁中地区航空磁力和放射性测量成果报告[R]. 地质部航空物探大队九○三队, 1980.
[42] Zhang W J, Jin G, Chen J Y, et al. Aeromagnetic and radiometric survey results in central Shandong region[R]. Aero Geophysical Brigade 903 Team,Ministry of Geology, 1980.
[43] 郝兴中. 鲁西地区铁矿成矿规律与预测研究[D]. 北京: 中国地质大学(北京), 2014.
[43] Hao X Z. Study on metallogenic regularities and prognosis of iron deposits in western Shandong Province[D]. Beijing: China University of Geosciences(Beijing), 2014.
[44] 侯重初. 大兴安岭地区的强磁性火山岩[J]. 地球物理学报, 1960, 3(2):144-148.
[44] Hou Z C. On the magnetic property of volcanic rocks occurring in the great shingan mountain region,Northeast China[J]. Chinese Journal of Sinica, 1960, 3(2):144-148.
[45] 谭承泽, 郭绍雍. 磁法勘探教程[M]. 北京: 地质出版社, 1984.
[45] Tan C Z, Guo S Y. Course of magnetic exploration[M]. Beijing: Geological Publishing House, 1984.
[1] 赵柏儒, 李厚朴, 张恒磊. 磁异常三维反演在磁铁矿勘查中的应用[J]. 物探与化探, 2024, 48(6): 1626-1632.
[2] 李兴康, 付永涛, 周章国, 杨安. 地磁日变不同时段特征差异及对地磁日变改正的影响[J]. 物探与化探, 2023, 47(1): 135-145.
[3] 张亮亮, 朱立新, 马生明, 林少一, 戴长国, 周明岭, 霍光, 徐忠华, 席明杰, 张涛. 胶东海域金矿床元素富集贫化特征及深部预测[J]. 物探与化探, 2021, 45(4): 835-845.
[4] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[5] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[6] 王昊, 严加永, 孟贵祥, 吕庆田, 王栩. 地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例[J]. 物探与化探, 2019, 43(6): 1173-1181.
[7] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[8] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[9] 李玉录, 邢利娟, 拜占红, 刘志华, 王震. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5): 889-895.
[10] 陈炳锦. 地面高精度磁法在陕南西乡地区磁铁矿勘查中的应用[J]. 物探与化探, 2014, 38(6): 1129-1133.
[11] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[12] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6): 1207-1211.
[13] 杨涛, 高金田, 顾左文, Baatarkhuu Dagva, Batsaihan Tserenpil. 蒙古国苏赫巴托尔—乌兰巴托—达兰扎达嘎德剖面岩石物性基本特征[J]. 物探与化探, 2014, 38(5): 943-948.
[14] 张天龙, 张维, 王忠义, 张福斌, 李斌, 杨立伟. 冀东滦南一带重磁异常特征及找矿意义[J]. 物探与化探, 2014, 38(4): 641-648.
[15] 郭莹, 曲赞, 范志雄, 王传雷. 关于磁测工作质量检查方式的实验及讨论[J]. 物探与化探, 2014, 38(4): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com