Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1173-1181    DOI: 10.11720/wtyht.2019.0143
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例
王昊1,2, 严加永1,2(), 孟贵祥1,2, 吕庆田1,2, 王栩1,2,3
1. 中国地质科学院,北京 100037
2. 中国地质调查局 中国地质科学院地球深部探测中心,北京 100037
3. 中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Geomagnetic gradient exploration and its test in metal deposits: a case study of the Layikeleke copper-iron deposit
Hao WANG1,2, Jia-Yong YAN1,2(), Gui-Xiang MENG1,2, Qing-Tian LU1,2, Xv WANG1,2,3
1. Chinese Academy of Geological Sciences, Beijing 100037, China
2. China Deep Exploration Center,China Geological Survey & Chinese Academy of Geological Sciences, Beijing 100037, China
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
全文: PDF(3687 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着超高灵敏度和高精度磁力仪的技术进步,磁梯度测量也成为可能,并在非爆炸物探测等工程物探领域中得到了广泛应用。为了解实测磁梯度与计算磁梯度的差异及其在金属矿上的应用效果,在新疆东准噶尔拉依克勒克铜铁矿开展了1∶5 000比例尺的磁梯度测量试验。对比了实测磁梯度与计算磁梯度的异同,发现实测磁梯度与计算磁梯度两者宏观趋势基本一致,但在异常细节上存在差异;在点距和线距不相等的情况下,计算磁梯度测线效果明显,在特定方向磁异常有沿测线方向拉长的现象;不同强度异常区计算梯度与实测梯度存在差异,特别是垂向梯度差异最大。实测磁梯度对埋藏浅异常大的地质体有相对明显的探测优势,并且可以获得更多的地质体边界和位置信息,对于低缓异常,由于地形等条件限制了探头之间的距离,获得磁异常较弱。结合拉伊克勒克磁铁矿勘探成果分析,认为实测磁梯度对局部异常探测比较灵敏,对围岩是有磁性的火山岩等矿床,地磁梯度测量有利于圈定磁性体边界。实测磁梯度的二维和三维矢量图也可以区分异常体的性质等,为找矿预测提供指示。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王昊
严加永
孟贵祥
吕庆田
王栩
关键词 磁法勘探实测磁梯度计算磁梯度拉依克勒克铜铁矿    
Abstract

With the progress in the study of ultra-high sensitivity and high precision magnetometers, magnetic gradient measurement has become possible, and is currently widely used in the field of engineering geophysical explorations such as non-explosives detection. In order to understand the difference between the measured magnetic gradient and the calculated magnetic gradient and its application effect on the metal ore, the authors carried out a 1∶5 000 magnetic gradient measurement test in the Laikluck copper-iron deposit in East Junggar, Xinjiang, The authors compared the difference and similarity between the measured magnetic gradient and the calculated magnetic gradient. It is found that the macroscopic trend of the measured magnetic gradient and the calculated magnetic gradient are basically the same, but there are differences in the anomaly details; when the point distance and the line spacing are not equal, the calculation of the magnetic gradient line is effective. In a certain direction, the magnetic anomaly has a tendency of lengthening along the direction of the line; the difference between the calculated gradient and the measured gradient in different intensity anomalies is the largest, especially the vertical gradient. The measured magnetic gradient has a relatively obvious detection advantage for burial shallow anomalous geological bodies, and can obtain more geological body information. For low-relief anomalies, the distance between the probes is limited due to the topographical conditions, and the magnetic anomalies are weak. Combined with the analysis of the exploration results of the Laikluck magnetite, it is considered that the measured magnetic gradient is sensitive to local anomaly detection, and the surrounding rocks are magnetic deposit such as volcanic rock. The geomagnetic gradient measurement is beneficial to delineating the magnetic boundary. The two-dimensional and three-dimensional vector of the measured magnetic gradient can also distinguish the nature of the anomaly and provide an indication for the prospecting prediction.

Key wordsmagnetic exploration    magnetic gradient measurement    calculated magnetic gradient    Layikeleke copper-iron mine
收稿日期: 2019-03-18      出版日期: 2019-11-28
:  P631  
基金资助:国家自然科学基金项目(41574133);国家重点基础研究发展计划项目(2018YFC0604002);新疆地勘基金项目(A11-3-XJ4);中国地质调查局“钦杭结合带及邻区深部地质调查”;“武陵山—江南造山带中段深部地质调查”项目(DD20160007);“武陵山—江南造山带中段深部地质调查”项目(DD20190071)
通讯作者: 严加永
作者简介: 王昊(1993-),男,硕士研究生,研究方向为深部资源探测。Email:709139830@qq.com
引用本文:   
王昊, 严加永, 孟贵祥, 吕庆田, 王栩. 地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例[J]. 物探与化探, 2019, 43(6): 1173-1181.
Hao WANG, Jia-Yong YAN, Gui-Xiang MENG, Qing-Tian LU, Xv WANG. Geomagnetic gradient exploration and its test in metal deposits: a case study of the Layikeleke copper-iron deposit. Geophysical and Geochemical Exploration, 2019, 43(6): 1173-1181.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0143      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1173
Fig.1  东准噶尔拉伊克勒克矿区及周边地质[21]
Q—第四系;D2b1—中泥盆统第一岩性段;D2b2—中泥盆统第二岩性段; D 2 2 —中泥盆统安山岩; D 2 1 —中泥盆统玄武岩;D1t—下泥盆统托让格库都克组; γ 4 2 —海西期二长花岗岩;γ π 4 2 —海西期花岗斑岩;δ O 4 2 —海西期石英闪长岩;γ δ 4 2 —海西早期花岗闪长岩;γ ξ 3 2 —加里东期英云闪长岩;βμ—辉绿岩脉
Fig.2  G858铯光泵磁力仪(a)和日变测量(b)
Fig.3  拉伊克勒克铜铁矿实测磁梯度与计算磁梯度对比
a—由总场计算的东西向水平磁梯度;b—东西向实测磁梯度;c—东西方向计算磁梯度减去实测磁梯度的差值;d—由总场计算的南北向水平磁梯度;e—南北向实测磁梯度;f—南北方向计算磁梯度减去实测磁梯度的差值;g—由总场计算的垂向梯度;h—垂向实测磁梯度;i—竖直方向计算磁梯度减去实测磁梯度的差值;ZK—钻孔
Fig.4  实测梯度解析信号(a)与计算梯度获得的解析信号(b)
Fig.5  磁梯度二维矢量(底图为化极磁异常等值线)
Fig.6  磁梯度三维矢量(底图为化极磁异常等值线)
Fig.7  根据梯度矢量推测的矿体水平投影
(底图为化极磁异常等值线,黑色多边形为推测磁铁矿体水平边界在地表的投影)
[1] 潘琦, 刘得军, 程星 , 等. 磁力梯度测量技术的新发展[J]. 地球物理学进展, 2018,33(6):2568-2574.
[1] Pan Q, Liu D J, Cheng X , et al. New development of magnetic gradient measurement technique[J]. Progress in Geophysics, 2018,33(6):2568-2574.
[2] Schmidt P W, Clark D A . Advantages of measuring the magnetic gradient tensor[J]. Aust. Soc. Explor. Geophys., 2000,85(8):2630.
[3] 张敬东 . 未爆炸弹的磁梯度探测方法[J]. 探测与控制学报, 2016,38(3):98-103,108.
[3] Zhang J D . Magnetic gradient detection of unexploded ordnance[J]. Journal of Detection & Control, 2016,38(3):98-103,108.
[4] 周帅, 黄大年, 王泰涵 . 利用磁法数据的解析信号探测未爆炸弹(UXO)[J]. 地球物理学进展, 2016,31(4):1767-1770.
[4] Zhou S, Huang D N, Wang T H . Detecting unexplored ordnance (UXO) using magnetic data analytical signals[J]. Progress in Geophysics, 2016,31(4):1767-1770.
[5] Yin G, Zhang Y T, Fan H B , et al. Integrated calibration of magnetic gradient tensor system[J]. Journal of Magnetism and Magnetic Materials, 2015,374:289-297.
[6] 秦葆瑚 . 磁法勘探中的梯度测量[J]. 物探与化探, 1980,4(2):12-19.
[6] Qin B H . Magnetic gradient measurement[J]. Geophysical and Geochemical Exploration, 1980,4(2):12-19.
[7] 吴招才, 刘天佑 . 磁力梯度张量测量及应用[J]. 地质科技情报, 2008(3):107-110.
[7] Wu Z C, Liu T Y . Magnetic gradient tensor: its properties and uses in geophysics[J]. Geological Science and Technology Information, 2008(3):107-110.
[8] 谢汝宽, 王平, 郭华 , 等. 考虑航磁水平梯度变化的ΔT网格化方法研究[J]. 地球物理学报, 2013,56(2):660-666.
doi: 10.6038/cjg20130230
[8] Xie R K, Wang P, Guo H , et al. Aeromagnetic total field gridding enhancement with horizontal gradient[J]. Chinese J. Geophys., 2013,56(2):660-666.
[9] 张朝阳, 肖昌汉, 阎辉 . 磁性目标的单点磁梯度张量定位方法[J]. 探测与控制学报, 2009,31(4):44-48.
[9] Zhang Z Y, Xiao C H, Yan H . Localization of a magnetic object based on magnetic gradient tensor at a single point[J]. Journal of Detection & Control, 2009,31(4):44-48.
[10] 张晨 . 磁异常及其梯度多参量联合反演研究[C]// 中国地球物理2013第十八专题论文集,中国地球物理学会, 2013.
[10] Zhang C . Magnetic anomaly and its gradient multi-parameter joint inversion[C]// Chinese Geophysical2013rd thesis collection,Chinese Geophysical Society, 2013.
[11] 张川 . 吊挂式航磁三维梯度测量系统在航空物探中的应用与研究[D]. 北京:中国地质大学(北京), 2018.
[11] Zhang C . Design and application of hanging aeromagnetic three dimensional gradient measurement system[D]. Beijing:China University of Geosciences(Beijing) , 2018.
[12] 李金朋, 张英堂, 范红波 , 等. 基于磁梯度张量的共轭梯度3D约束反演[J]. 探测与控制学报, 2016,38(4):88-92.
[12] Li J P, Zhang Y T, Fan H B , et al. 3D constrained inversion of conjugate gradient based on magnetic gradient tensor[J]. Journal of Detection & Control, 2016,38(4):88-92.
[13] 张青杉, 麻丰林, 许丽云 . 航空三维磁梯度测量方案研究[J]. 地质与勘探, 2010,46(6):1087-1091.
[13] Zhang Q S, Ma F L, Xu L Y . Study on the 3D gradient aeromagnetic survey[J]. Geology and Exploration, 2010,46(6):1087-1091.
[14] 张昌达 . 航空磁力梯度张量测量航空磁测技术的最新进展[J]. 工程地球物理学报, 2006(5):354-361.
[14] Zhang C D . Airborne tensor magnetic gradiometry-the latest progress of airborne magnetometric techology[J]. Chinese Journal of Engineering Geophysic, 2006(5):354-361.
[15] Foley C P, Leslie K E . Potential use of high Tc SQUIDS for airborne electromagnetics[J]. Exploration Geophysics, 1998,29(2) : 30-34.
[16] Foley C P, Leslie K E, Binks R , et al. Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical Applications[J]. IEEE Transactions on Applied Superconductivity, 1999,9(2) : 3786-3792.
[17] Taylor P T, Kis K I, Wittmann G . Satellite-altitude horizontal magnetic gradient anomalies used to define the Kursk magnetic anomaly[J]. Journal of Applied Geophysics, 2014,109:133-139.
[18] Cowan D R, Baigent M, Cowan S . Aeromagnetic gradiometers-a perspective[J]. Exploration Geophysics, 1995,26(3):241-246.
[19] 郭华, 王平, 谢汝宽 . 航磁全轴梯度数据地质解释优势研究[J]. 地球物理学进展, 2013,28(5):2688-2692.
doi: 10.6038/pg20130551
[19] Guo H, Wang P, Xie R K . A Study of geological interpretation with the tri-axial aeromagnetic gradients[J]. Progress in Geophys., 2013,28(5):2688-2692.
[20] 郭华, 吴成平 . 航磁梯度数据与地质异常反映之间的关系[J]. 地球物理学进展, 2014,29(4):1650-1656.
doi: 10.6038/pg20140421
[20] Guo H, Wu C P . The relation between aeromagnetic gradient data and geologic anomaly[J]. Progress in Geophysics, 2014,29(4):1650-1656.
[21] 严加永, 孟贵祥, 杨岳清 , 等. 新疆东准噶尔拉伊克勒克岩浆矽卡岩型富铜铁矿的发现及其成矿特征[J]. 地质论评, 2017,63(2):413-426.
[21] Yan J Y, Meng G X, Yang Y Q , et al. Discovery and metallogenic characteristics of Layikeleke magmatic skarn type of rich copper-iron deposit, eastern Junggar, Xinjiang[J]. Geological Review, 2017,63(2):413-426.
[22] 吕博, 孟贵祥, 杨岳清 , 等. 新疆拉依克勒克隐伏斑岩矿床的发现、Re-Os同位素定年及地质意义[J]. 岩石学报, 2014,30(4):1168-1178.
[22] Lü B, Meng G X, Yang Y Q , et al. Discover of Layikeleke insidious porphyry deposit in Xinjiang, Re-Os isotope dating and its geological implications[J]. Acta Petrologica Sinica, 2014,30(4):1168-1178.
[23] 严加永, 孟贵祥, 邓震 , 等. 新疆拉伊克勒克铜铁矿综合地球物理探测与隐伏矿定位[J]. 地质论评, 2013,59(z1):981-982.
[23] Yan J Y, Meng G X, Deng Z , et al. Integrated geophysical exploration and concealed ore location copper-iron mine in Layikelele, Xinjiang[J]. Geological Review, 2013,59(z1):981-982.
[24] 李高峰, 孟贵祥, 张丽婷 , 等. 新疆东准噶尔拉伊克勒克斑岩铜(钼)矿床成岩成矿年龄、地球化学特征及其意义[J]. 地质通报, 2018,37(6):1113-1124.
[24] Li G F, Meng G X, Zhang L T , et al. Rock-forming and ore-forming ages and geochemistry of the Layikeleke porphyry Cu(Mo) deposit in East Junggar of Xinjiang and their geological significance[J]. Geological Bulletin of China, 2018,37(6):1113-1124.
[25] 严加永, 孟贵祥, 邓震 , 等. 新疆拉伊克勒克铜多金属矿的发现及找矿前景[J]. 矿床地质, 2014,33(s1):763-764.
[25] Yan J Y, Meng G X, Deng Z , et al. Discovery and prospect of Layikeleke copper polymetallic deposit in Xinjiang. Mineral Deposits, 2014,33(s1):763-764.
[26] 董连慧, 屈迅, 朱志新 , 等. 新疆大地构造演化与成矿[J]. 新疆地质, 2010,28(40):351-357.
[26] Dong L H, Qü X, Zhu Z X , et al. Tectonic evolution and metallogenesis of xinjiang, China[J]. Xinjiang Geology, 2010,28(40):351-357.
[27] 董连慧, 朱志新, 屈迅 , 等. 新疆蛇绿岩带的分布、特征及研究新进展[J]. 岩石学报, 2010,26(10):2894-2904.
[27] Dong L H, Zhu Z X, Qü X , et al. Spatial distribution, geological features and latest research progress of the main ophiolite zones in Xinjiang, NW-China[J]. Acta Petrologica Sinica, 2010,26(10):2894-2904.
[28] 杜世俊, 屈迅, 邓刚 , 等. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景[J]. 岩石学报, 2010,26(10):2981-2996.
[28] Du S J, Qü X, Deng G , et al. Chronology and tectonic setting of the intrusive bodies and associated porphyry copper deposit in Hersai area, eastern Junggar[J]. Acta Petrologica Sinica, 2010,26(10):2981-2996.
[29] 屈迅, 徐兴旺, 梁广林 , 等. 蒙西斑岩型铜钼矿地质地球化学特征及其对东准噶尔琼河坝岩浆岛弧构造属性的制约[J]. 岩石学报, 2009,25(4):765-776.
[29] Qü X, Xü X W, Liang G L , et al. Geological and geochemical characteristics of the Mengxi Cu-Mo deposit and its constraint to tectonic setting of the Qiongheba magmatic arc in eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2009. 25(4):765-776.
[30] 屈迅, 徐兴旺, 董连慧 , 等. 新疆东准噶尔斑岩铜矿主要构造类型[J]. 新疆地质, 2010,28(1):32-37.
[30] Qü X, Xü X W, Dong L H , et al. Tectonic types of porphyry copper deposit in eastern Junggar, Xinjiang[J]. Xinjiang Geology, 2010,28(1):32-37.
[31] Yan J Y, Chen X B, Meng G X , et al. Concealed faults and intrusions identification based on multi-scale edge detection and 3D inversion of gravity and magnetic data: A case study in Qiongheba area, Xinjiang, Northwest China[J]. Interpretation, 2019,7(2):T331-T345.
[32] 刘保华, 张维冈, 孟恩 . 重力异常垂向一阶导数的一种简便算法[J]. 青岛海洋大学学报, 1995,25(2):233-238.
[32] Liu B H, Zhang W G, Meng E . A simple method for calculating the first vertical derivative of gravity anomaly[J]. 1995,25(2):233-238.
[33] 高秀鹤 . 重磁及张量梯度数据三维反演方法研究与应用[D]. 长春:吉林大学, 2019.
[33] Gao X H . The study and application of 3D inversion methods of gravity&magnetic and their gradient tensor data[D]. Changchun: Jilin University, 2019.
[34] 王万银 . 位场解析信号振幅极值位置空间变化规律研究[J]. 地球物理学报, 2012,55(4):1288-1299.
doi: 10.6038/j.issn.0001-5733.2012.04.024
[34] Wang W Y . Spatial variation law of the extreme value position of analytical signal amplitude for potential field data. Chinese[J]. Geophys. , 2012,55(4):1288-1299.
[35] 王万银, 邱之云, 杨永 , 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010,25(1):196-210.
doi: 10.3969/j.issn.1004-2903.2010.01.027
[35] Wang W Y, Qiu Z Y, Yang Y , et al. Some advances in the edge recognition of the potential field[J]. Progress in Geophys. , 2010,25(1):196-210.
[36] 张季生, 高锐, 李秋生 , 等. 欧拉反褶积与解析信号相结合的位场反演方法[J]. 地球物理学报, 2011,54(6):1634-1641.
doi: 10.3969/j.issn.0001-5733.2011.06.023
[36] Zhang J S, Gao R, Li Q S , et al. A combined Euler and analytie signal method for an inversion calculation of potential data[J]. Chinese J. Geophys, 2011,54(6):1634-1644.
[1] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[2] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[3] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[4] 张天龙, 张维, 王忠义, 张福斌, 李斌, 杨立伟. 冀东滦南一带重磁异常特征及找矿意义[J]. 物探与化探, 2014, 38(4): 641-648.
[5] 郭莹, 曲赞, 范志雄, 王传雷. 关于磁测工作质量检查方式的实验及讨论[J]. 物探与化探, 2014, 38(4): 781-786.
[6] 吴志春, 郭福生, 谢财富, 刘林清, 姜勇彪. 江西省相山铀多金属矿田 重磁坡度异常提取与成矿预测[J]. 物探与化探, 2013, 37(3): 453-460.
[7] 郭莹, 王远清, 范志雄, 王传雷, 柳超. 磁力仪探头之间安全距离的实验与认识[J]. 物探与化探, 2012, 36(6): 966-969.
[8] 梁学堂, 全浩理, 马玄龙, 李义. 湖北大冶铜山口地区地球物理深部找矿模式[J]. 物探与化探, 2012, 36(4): 697-704.
[9] 张恒磊, 刘天佑, 朱朝吉, 周肇武. 区域地质调查与资源勘查高精度磁测找矿效果——以青海尕林格矿区为例[J]. 物探与化探, 2011, 35(1): 12-16.
[10] 李庆阳, 王艳梅, 邓霜岭. 新疆若羌县阿尔金山脉里维齐明隐伏铁矿床地面磁异常特征[J]. 物探与化探, 2010, 34(3): 286-288.
[11] 艾斯卡尔, 李华. 关于磁法勘探测点坐标的生成与工作部署图绘制[J]. 物探与化探, 2010, 34(2): 250-252.
[12] 张恒磊, 刘天佑. 基于小波分析的磁测数据处理流程及解释方法[J]. 物探与化探, 2009, 33(6): 686-690.
[13] 郭友钊, 刘海良, 张余芝, 李宜运, 李磊. 湘南骑田岭地区锡多金属矿的岩石磁学研究[J]. 物探与化探, 2006, 30(6): 521-524.
[14] 袁志文, 吴天彪. 浅水中磁性柱状体的磁场特征[J]. 物探与化探, 2005, 29(6): 530-532.
[15] 林君, 嵇艳鞠, 于生宝, 王忠, 王静, 王艳, 周国华, 吴国强. ATEM-Ⅱ型瞬变电磁系统的实际应用[J]. 物探与化探, 2004, 28(6): 496-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com