A novel method for determining magnetite ore-induced magnetic anomalies and its application
FAN Zheng-Guo1(), YANG Hai1,2,3, GE Teng-Fei1,2, HE Jing-Zi1,2(), JIA Zhi-Ye1, FAN Zhen-Yu1,2, LIU Qian-Kun1, YANG Xue1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China 2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Accurately and quickly determining the geological properties related to magnetic anomaly sources is a key technical challenge in magnetic prospecting, directly influencing the accuracy of geological interpretation using magnetic survey data. The induced magnetization varies with time, whereas the remanent magnetization typically remains constant over time. Therefore, there exists a theoretical basis for investigating the properties of magnetic anomaly source bodies by detecting the time variations of magnetic anomaly intensity. Despite geophysicists' relevant research in this field, practical technical methods have not been established. Hence, this study proposed a novel method for determining magnetite ore-induced magnetic anomalies. Based on the observational data of geomagnetic diurnal variations, the proposed method constructed parameters, including the variations (A), variation rate (η), and normalized variations (F) of magnetic anomaly intensity, to evaluate the properties of strong magnetic anomaly source bodies. Accordingly, the proposed method determined the possibility of magnetite ore-induced magnetic anomalies, showing critical significance for magnetite exploration.
范正国, 杨海, 葛藤菲, 何敬梓, 贾志业, 范振宇, 刘前坤, 杨雪. 磁铁矿矿致磁异常测定方法及其应用[J]. 物探与化探, 2025, 49(6): 1251-1260.
FAN Zheng-Guo, YANG Hai, GE Teng-Fei, HE Jing-Zi, JIA Zhi-Ye, FAN Zhen-Yu, LIU Qian-Kun, YANG Xue. A novel method for determining magnetite ore-induced magnetic anomalies and its application. Geophysical and Geochemical Exploration, 2025, 49(6): 1251-1260.
Liu S Y, Tian Q N, Zhao J S, et al. An attempt to reduce ambiguity in geophysical interpretation[J]. Geophysical and Geochemical Exploration, 2010, 34(6):691-696.
[4]
范正国, 黄旭钊, 熊盛青, 等. 磁测资料应用技术要求[M]. 北京: 地质出版社, 2010.
[4]
Fan Z G, Huang X Z, Xiong S Q, et al. Technical requirements for application of magnetic survey data[M]. Beijing: Geological Publishing House, 2010.
Xiong S Q, Xu X Y. Application prospect of aerogeophysics in strategic mineral exploration[J]. Journal of Earth Sciences and Environment, 2023, 45(2):143-156.
[6]
Prasad K N D, Patel V C, Bansal A R, et al. New insights into the crustal magnetization of the eastern Indian shield inferred from the aeromagnetic data-based depth to the bottom of the magnetic sources (DBMS)[J]. Journal of Asian Earth Sciences, 2023, 245:105544.
[7]
Naveen P U, Sathapathy S K, Giri Y, et al. Crustal structure across the central part of Narmada-Son Lineament,India based on the interpretation of aeromagnetic and gravity data:Geological implications[J]. Journal of Asian Earth Sciences, 2023, 255:105765.
[8]
范正国, 周道卿. 航磁异常找矿案例[M]. 北京: 地质出版社, 2015.
[8]
Fan Z G, Zhou D Q. Case study of aeromagnetic anomaly prospecting[M]. Beijing: Geological Publishing House, 2015.
Fan Z G, Yu X Z, Zhao T Y, et al. Aerial geophysical survey of key mineralization belts such as Qinling and Tianshan Mountains[R]. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 2019.
Meng G X, Yan J Y, Lyu Q T, et al. Application of deep detecting technology in Hanxing subtype iron deposits and an integrated prospecting model:A case study of Baijian iron deposit[J]. Mineral Deposits, 2009, 28(4):493-502.
Wu C P, Yu C C, Zhang D S, et al. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden[J]. Geological Bulletin of China, 2025, 44(6):1164-1173.
Zhu Y Z, Sun C, Wang H H, et al. Discussion on prospecting methods for rich iron ore in deep coverage areas based on reflected wave seismic exploration technology[J/OL]. Earth Science Frontiers, 2025:1-12(2025-03-18).https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.https://link.cnki.net/doi/10.13745/j.esf.sf.2025.3.37.
[13]
Ward S H, Ruddock K A. A field experiment with a rubidium-vapor magnetometer[J]. Journal of Geophysical Research, 1962, 67(5):1889-1898.
[14]
Goldstein N E, Ward S H. The separation of remanent from induced magnetism in situ[J]. 1966, 31(4):779-796.
[15]
Clark D A, Huddleston M P, Schmidt P W, et al. Remote determination of magnetic properties and improved drill targeting of magnetic anomaly sources by differential vector magnetometry (DVM)[J]. Exploration Geophysics, 1998, 29(3-4):312-319.
Li C M, Li J, Yu Z, et al. The method of increasing precision of diurnalcorrection in high-precision magnetic survey[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(3):211-214.
Xu D L, Fan Z G, Shu Q, et al. The influence of two typical kinds of magnetic disturbance on the airborne magnetic survey[J]. Geophysical and Geochemical Exploration, 2015, 39(2):362-365.
Li Y H, Liu D Z, Lu S K, et al. Analysis and modeling of temporal and spatial variation characteristics of ionosphere and geomagnetic field[M]. Xi’an: Northwestern Polytechnical University Press, 2021.
[23]
张雨欣. 地磁日变规律以及日变值计算方法研究[D]. 北京: 中国地质大学(北京), 2021.
[23]
Zhang Y X. Research on geomagnetic diurnal variation patterns and the calculation method of diurnal variation[D]. Beijing: China University of Geosciences(Beijing), 2021.
[24]
康世奇. 地磁日变数据特征分析及预测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.
[24]
Kang S Q. Research on characteristics analysis and prediction techniques of geomagnetic daily variation data[D]. Harbin: Harbin Institute of Technology, 2023.
Xu D L, Deng M S, Wang N, et al. 1∶50000 aerial geophysical (gravimetric and magnetic) survey in Qihe-Yucheng area,Shandong Province[R]. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 2017.
Ministry of Land and Resources of the People’s Republic of China. Criterionofaeromagneticsurvey:DZ/T0142—2010[S]. Beijing: Standards Press of China, 2010.
Zhang C, Cui F H, Zhang Z L, et al. Petrogenesis of ore-bearing dioritic pluton in jinling area in western Shandong:Evidence from zircon U-Pb chronology and petro-geochemistry[J]. Journal of Jilin University:Earth Science Edition, 2017, 47(6):1732-1745.
[30]
Xie Q H, Zhang Z C, Hou T, et al. Petrogenesis of the zhangmatun gabbro in the ji’nan complex,North China Craton:Implications for skarn-type iron mineralization[J]. Journal of Asian Earth Sciences, 2015, 113:1197-1217.
Zhang B T, Mei Z H, Li X Z, et al. Key ore-controlling factors of the skarn type high-grade iron deposits in North China Craton:Constraints from stratigraphy[J]. Geoscience, 2024, 38(1):98-116.
Guo J, Huang X L, He P L, et al. Compositional variations of amphiboles from Mesozoic high-Mg diorite in western Shandong:Implications for the mineralization of skarn-type iron deposits[J]. Geotectonica et Metallogenia, 2024, 48(4):800-819.
[33]
Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy and Petrology, 2004, 147(6):750-767.
[34]
Huang X L, Zhong J W, Xu Y G. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton:Insights from Early Cretaceous mafic intrusions in western Shandong,East China[J]. Geochimica et Cosmochimica Acta, 2012, 96:193-214.
[35]
Jin Z L, Zhang Z C, Hou T, et al. Genetic relationship of high-Mg dioritic pluton to iron mineralization:A case study from the Jinling skarn-type iron deposit in the North China Craton[J]. Journal of Asian Earth Sciences, 2015, 113:957-979.
Yang H M, Yao Z X,Dong, M L. Aerogeophysical (magnetic and radiometric) survey results in central and eastern Shandong Province[R]. Aero Survey Brigade 902 Team,Geophysical Prospecting Bureau,Ministry of Geology,People's Republic of China, 1960.
Yang C H, Xu W L, Yang D B, et al. Petrogenesis of the Mesozoic high-Mg diorites in west Shandong:Evidence from chronology and petro-geochemistry[J]. Earth Science, 2006, 31(1):81-92.
Zhang B T, Hu Z G, Mei Z H, et al. Geological and geophysical characteristics and deep prospecting prediction of Xinzhuang iron deposit in Jinling area,Zibo,Shandong[J]. Geological Review, 2022, 68(6):2259-2268.
Zhang B T, Hu Z G, Cao Q C, et al. Iron-rich ore exploration potential and favorable sites for deep horizon of Jinling magmatic complex distribution in Zibo,Shandong Province[J]. Acta Geologica Sinica, 2021, 95(5):1545-1560.
Hao X Z, Wang Q Y. Metallogenic prediction of skarn iron deposits in the central and northern Luzhong uplift,East China[J]. Journal of Geology, 2016, 40(3):443-449.
Zhang W J, Jin G, Chen J Y, et al. Aeromagnetic and radiometric survey results in central Shandong region[R]. Aero Geophysical Brigade 903 Team,Ministry of Geology, 1980.
[43]
郝兴中. 鲁西地区铁矿成矿规律与预测研究[D]. 北京: 中国地质大学(北京), 2014.
[43]
Hao X Z. Study on metallogenic regularities and prognosis of iron deposits in western Shandong Province[D]. Beijing: China University of Geosciences(Beijing), 2014.
Hou Z C. On the magnetic property of volcanic rocks occurring in the great shingan mountain region,Northeast China[J]. Chinese Journal of Sinica, 1960, 3(2):144-148.
[45]
谭承泽, 郭绍雍. 磁法勘探教程[M]. 北京: 地质出版社, 1984.
[45]
Tan C Z, Guo S Y. Course of magnetic exploration[M]. Beijing: Geological Publishing House, 1984.