Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 649-655    DOI: 10.11720/wtyht.2020.0072
     中国地质学会勘探地球物理专委会2019年会优秀论文 本期目录 | 过刊浏览 | 高级检索 |
疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例
顾端阳1, 窦文博2, 丁富寿3, 严力3, 吕浩3
1. 中国石油天然气股份有限公司 青海油田分公司勘探开发研究院,甘肃 敦煌 736202
2. 中国石油天然气股份有限公司 长庆油田分公司第十一采油厂,甘肃 庆阳 745000
3. 中国石油天然气股份有限公司 青海油田分公司采油三厂,青海 茫崖 816400
Research on the genesis and identification of low resistivity gas reservoirs in unconsolidated sandstone gas reservoirs:A case study of the Sebei gas field,Qaidam Basin
Duan-Yang GU1, Wen-Bo DOU2, Fu-Shou DING3, Li YAN3, Hao LYU3
1. Exploration and Development Research Institute of Qinghai Oilfield Branch of CNPC,Dunhuang 736202,China
2. The 11th Oil Production Plant of Changqing Oilfield Branch Petrochina,Qingyang 745000,China
3. No.3 Oil Production Plant of Qinghai Oilfield Branch Petrochina,Mangya 816400,China
全文: PDF(4985 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

涩北气田为第四系湖湘沉积的生物气藏,埋藏浅、成岩差,储集层存在“高孔隙度、高矿化度、高黏土含量、含(黄/磁)铁矿高电导”等“四高”背景,形成了低阻气层和特殊的特低阻气层。本文基于低阻气层测井曲线电性响应特征,研究其空间展布与对生产特征的影响,开展低阻气层成因与机理分析。研究表明:①高孔隙度、高矿化度、高黏土含量等地质背景,是导致涩北气田气层电阻率低的主要因素,砂泥岩薄互层也有一定程度影响;②特殊导电矿物的存在则是异常低阻气层的直接原因;③提出自然伽马—电阻率交会方法,有效识别地质背景、储层特性形成的低阻气层,而侧向、感应测井双电阻交会剖面提升了薄砂体的识别效果;④在测井精细解释的基础上加强研究铁矿质层平面展布,通过试气手段利用动态法形成平面监测,提高低阻气层解释的精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾端阳
窦文博
丁富寿
严力
吕浩
关键词 低阻气层束缚水饱和度泥质含量磁铁矿交会图    
Abstract

The Sebei gas field is a Quaternary Huxiang sedimentary biogas reservoir with shallow burial and poor diagenesis.The reservoir has "four highs" background of "high porosity,high salinity,high clay content,and high conductivity of (yellow/magnetic) iron ore".A low gas barrier layer and a special ultra-low gas barrier layer were formed.Based on the electrical response characteristics of the low-resistance gas layer logging curve,the authors studied its spatial distribution and its influence on production characteristics,and made a mechanism analysis of the low-resistance gas layer.The results are as follows:First,geological backgrounds such as high porosity,high salinity,and high clay content are the main factors leading to the low resistivity of the gas layer in the Sebei gas field,and the thin interbeds of sand and mudstone also have a certain effect;Second,the existence of special conductive minerals is the direct factor responsible for the abnormal low-resistance gas layer;Third,the natural gamma-resistance intersection method can effectively identify the low-resistance gas layer formed by geological background and reservoir characteristics;as for lateral and induction logging,the double-resistance cross section improves the recognition effect of thin sand bodies;Fourth,on the basis of fine logging interpretation,it seems that strengthening the study of the planar distribution of iron ore layers and using dynamic methods to form plane monitoring by means of gas testing can improve the precision of the interpretation of low-resistance gas layers.

Key wordslow resistance gas layer    irreducible water saturation    mud content    magnetite    crossplot
收稿日期: 2020-01-19      出版日期: 2020-06-24
:  P631.4  
基金资助:国家科技重大专项“疏松砂岩气藏长期稳产技术”(2016ZX05015-004);中国石油天然气股份有限公司科技重大专项课题“柴达木盆地老气区控水稳气及新气区高效开发技术研究”(2016E-0106GF)
作者简介: 顾端阳(1984-),女,河南周口人,硕士研究生,主要从事油气田开发及开发测井方面的研究工作。Email: gudyqh@petrochina.com.cn
引用本文:   
顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
Duan-Yang GU, Wen-Bo DOU, Fu-Shou DING, Li YAN, Hao LYU. Research on the genesis and identification of low resistivity gas reservoirs in unconsolidated sandstone gas reservoirs:A case study of the Sebei gas field,Qaidam Basin. Geophysical and Geochemical Exploration, 2020, 44(3): 649-655.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0072      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/649
Fig.1  涩X2井气层测井响应特征
Fig.2  涩2-XX井特殊矿物层段测井响应特征
Fig.3  单层投产初期产能与水气比关系
Fig.4  涩X-33井极值对称交会识别方法区分气层与水侵层
Fig.5  低阻试气层测井曲线响应特征
[1] 吴锡令. 生产测井原理[M]. 北京: 石油工业出版社, 1997.
[1] Wu X L. Production logging principle[M]. Beijing: Petroleum Industry Press, 1997.
[2] 洪有密. 测井原理与综合解释[D]. 东营:中国石油大学, 2007.
[2] Hong Y M. Logging principle and comprehensive interpretation[D]. Dongying:China University of Petroleum, 2007.
[3] 郭海敏, 戴家才, 陈科贵. 生产测井原理与资料解释[M]. 北京: 石油工业出版社, 2007.
[3] Guo H M, Dai J C, Chen K G. Production logging principle and data interpretation[M]. Beijing: Petroleum Industry Press, 2007.
[4] 吴都. 致密砂岩储层参数测井方法综合评价与研究[D]. 武汉:长江大学, 2012.
[4] Wu D. Comprehensive evaluation and research on logging method of tight sandstone reservoir parameters[D]. Wuhan:Yangtze University, 2012.
[5] 严焕德, 王天祥, 赵为永, 等. 涩北气田高阻水层成因及其对储层参数的影响[J]. 青海石油, 2009,27(2):55-57.
[5] Yan H D, Wang T X, Zhao W Y, et al. Genesis of high-resistivity water layer in Sebei gas field and its influence on reservoir parameters[J]. Qinghai Petroleum, 2009,27(2):55-57.
[6] 左银卿, 刘炜, 袁路波, 等. 含黄铁矿低电阻率储层测井评价技术[J]. 测井技术, 2007,31(1):25-29.
[6] Zuo Y Q, Liu W, Yuan L B, et al. Logging evaluation techinique for low resistivity reservior Containing Pyrite[J]. Well Logging Technolocy, 2007,31(1):25-29.
[7] 张兆辉, 高楚桥, 高永德. 孔洞型储层有效性评价新方法[J]. 天然气地球科学, 2013,24(3):529-533.
[7] Zhang Z H, Gao C Q, Gao Y D. New method for effectiveness evaluation of Vuggy Reservior[J]. Nature Gas Geoscience., 2013,24(3):529-533.
[8] Donaldson E C, Chernoglazov V. Characterization of drilling mud fluid invasion[J]. Journal Petroleum Science and Engineering, 1987.
[9] Edmondson H N. Archie's law:Electrical conduction in cleare,water-bearing rock[J]. The Technical Review, 1988,36(3):4-13.
[10] 徐静, 杨俊龙, 饶辰威, 等. 苏里格气田西区上古生界低阻气层成因分析[J]. 科学技术与工程, 2012,12(30):7832-7835.
[10] Xu J, Yang J L, Rao C W, et al. Analysis on the causing mechanism of low resistivity gas zone of Neopaleozioc in the west of Sulige Gasfiled[J]. Science Technology and Engineering, 2012,12(30):7832-7835.
[11] 段新国, 衡勇, 王洪辉, 等. 苏里格气田南区上古气藏低阻气层形成机理[J]. 成都理工大学学报:自然科学版, 2015,42(4):427-434.
[11] Duan X G, Heng Y, Wang H H, et al. Genetic mechanism of Upper Paleozoic low-resistibity gas reservoirs in South of Sulige Gas field[J]. Journal of Chengdu University of Technology:Science &Technology Edition, 2015,42(4):427-434.
[12] 李鹏举, 李勇勇, 徐茂河, 等. 地层水矿化度对补偿中子测井影响的自动校正方法研究[J]. 物探与化探, 2019,43(4):815-821.
[12] Li P J, Li Y Y, Xu M H, et al. Research on automatic correction method of influence of formation water Salinity on compensating neutron logging[J]. Geophysical and Geochemical Exploration, 2019,43(4):815-821.
[13] 赵军, 邓婷, 刘兴礼, 等. 吉拉克油田三叠系低阻油层识别方法[J]. 特种油气藏, 2011(2):25-27.
[13] Zhao J, Deng T, Liu X L, et al. Identification of the Triassic low resistivity reservoirs in the Jilake oilfield[J]. Special Oil and Gas Reserviors, 2011(2):25-27.
[14] 张颖, 杨丽丽, 陈木银, 等. 阵列感应侵入因子法与声波—电阻率交会图相结合识别镇北地区延安组低阻油层[J]. 西安石油大学学报:自然科学版, 2014,29(3):8-15.
[14] Zhang Y, Yang L L, Chen M Y, et al. Identification of low-resistivity of Yan'an Formation in Zhenbei area by combining array induction invasive factor method with interval transit time-resistivity cross-plot[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2014,29(3):8-15.
[15] 高媛, 吴少波, 王琛, 等. 马岭油田BS区延10油藏水淹层测井响应特征分析[J]. 西安石油大学学报:自然科学版, 2014,29(3):27-31.
[15] Gao Y, Wu S B, Wang C, et al. Logging response characteristics analysis of water-flooded layer of Yan 10 reservoir in BS area of Maling Oilfield[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2014,29(3):27-31.
[16] 孙永涛. 利用测井资料定性识别水淹层的交会图方法[J]. 大庆石油地质与开发, 2014,33(2):161-164.
[16] Sun Y T. Crossplot method to qualitatively recognize the watered-out reservoir by the well logging data[J]. Petroleum Geology & Oilfield Development in Daqing, 2014,33(2):161-164.
[17] 陈淑芹, 许春艳, 赵虹, 等. 常规测井水淹层综合识别方法研究[J]. 科技资讯, 2011(9):54-55.
[17] Chen S Q, Xu C Y, Zhao H, et al. Research on comprehensive identification method of conventional logging water Flooded Layer[J]. Science & Technology Information, 2011(9):54-55.
[18] Head E, Cannon D, Allen D, et al. Quantitative invasion description[C]// SPWLA 33rd Annual Logging Symposium, 1992: 1-20.
[19] Prammer M G, Bouton J C, Chandler R N, et al. A new multiband generation of NMR logging tools[J]. Spe Reservoir Evaluation & Engineering, 2001,4(1):59-63.
[20] Barber T D R A. Using a multiarray induction Tllo to achieve high-resolution logs with minnimum environmental Effect[C]// SPE 22725 1991.
[1] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[2] 李玉录, 邢利娟, 拜占红, 刘志华, 王震. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5): 889-895.
[3] 陈炳锦. 地面高精度磁法在陕南西乡地区磁铁矿勘查中的应用[J]. 物探与化探, 2014, 38(6): 1129-1133.
[4] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[5] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6): 1207-1211.
[6] 丁永浩, 任莉. 中东T油田灰岩储层自然伽马能谱测井的应用[J]. 物探与化探, 2014, 38(5): 890-894.
[7] 王建飞, 左琼华, 陈载林. 钻孔岩芯磁参数测定提高磁铁矿矿层预测精度[J]. 物探与化探, 2012, 36(4): 556-558.
[8] 刘益中, 詹少全, 李爱勇, 冯戋戋, 赵松. AMT在印尼某铁矿区勘查中的应用[J]. 物探与化探, 2012, 36(4): 559-561.
[9] 李国福, 李录明, 李才明. 三维定量交会技术在流体预测中的研究[J]. 物探与化探, 2011, 35(3): 398-401.
[10] 徐新学. 大地电磁测深法在深部矿产资源调查中的应用[J]. 物探与化探, 2011, 35(1): 17-19.
[11] 武斌, 曹俊兴, 强羽. 根据磁异常特征预测红格岩盆底部大型铁矿[J]. 物探与化探, 2010, 34(6): 795-799,805.
[12] 田达志, 常志民, 王大勇. 蒙古国某地航空物探异常综合研究及找矿实例[J]. 物探与化探, 2010, 34(4): 458-462.
[13] 王卫平, 王守坦. 吊舱式直升机频率域电磁系统 在北京密云红光铁矿的勘查效果[J]. 物探与化探, 2006, 30(5): 420-426.
[14] 郭余峰, 单秀兰. 利用自然伽马能谱确定地层岩性的方法[J]. 物探与化探, 1996, 20(3): 198-201.
[15] 陈曜岑, 古端龙. 主分量分析法在测井解释工作中的应用[J]. 物探与化探, 1996, 20(3): 209-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com